
AD-A173 595 JANUS/ADA IMPLEMENTATION OF A STAR CLUSTjE NTN8OF 114
PERSONAL COMPUTERS I..CU) NRYAL POSTORUT5HO.
MONTEREY CAR L HARTNAN ET AL. JUN 86
UNCLRSIFIEDF/B 17/2 N

mhhhhhhhhhhmm
mommohmmhhuo

-.. .*

1111 .. 1 2.8 1250

L 6 IIaU
L a

111111-2.5

IS

MICROCOPY RESOLUTION TEST CHART
NA)IONAL BUREAU oF STANDARDS 1961 4

LI

- -, _ ,'€ *'.''. .. '¢
-' ' " '7 ' ' ' ' ' ' -=

""" " " """ p.

LflLO .' -:-

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
JANUS/ADA IMPLEMENTATION OF A STAR CLUSTER

NETWORK OF PERSONAL COMPUTERS WITH
INTERFACE TO AN ETHERNET LAN

ALLOWING ACCESS TO DDN
RESOURCES

by k'

Robert L. Hartman

and

C.:1 Alec F. Yasinsac

June 1986

Thesis Advisor: Uno R. Kodres
A- .-

C ~ Approved for public release; distribution is unlimited

86 1
<...

.::-.:-.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
?a REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS %

UNCLASS IFIED _ _ _ _"_•

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORG,,NIZATION REPORT NUMBER(S) .. :.

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School Code 52 Naval Postgraduate School
6c. ADDRESS (City. State, and ZIPCode) 7b. ADDRESS (City, State. and ZIP Code) ... 4 . "

Monterey, California 93943-5000 Monterey, California 93943-5000

8a. NAME OF FUNDING /SPONSORING lb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. AOORESS(City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT -
ELEMENT NO NO NO ACCESSION NO .

1I TITLE (Include Security Classification) 4

JANUS/ADA IMPLEMENTATION OF A STAR CLUSTER NETWORK OF PERSONAL COMPUTERS
WITH INTERFACE TO AN EHTERNET LAN ALLOWING ACCESS TO DDN RESOURCES
12 PERSONAL AUTHOR(S)
Hartman, Robert L. and Yasinsac, Alec
13a TYPE OF REPORT 13b TIME COVERED 14 ATE OF REPORT (Year Month, Day) IS PAGE COUNT,..
Master's Thesis FROM TO 198, June 341
'6 SUPPLEMENTARY NOTATION

'7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary ad identify by block number)
FIELD GROUP SUB-GROUP LAN; Concentrator; Cluster; DON Access;

Janus/Ada

ABSTRACT (Continue on reverif necesary nd identify by block number)

This thesis demonstrates the viability of implementing a local area
network connecting a star cluster of Z-100 personal computers to an
ETHERNET local area network and allowing access to a wide area network,
ARPANET, through a host on ETHERNET, the VAX 11-780 minicomputer operating
under UNIX. The system allows local file and message transfer in port-to-
port and broadcast mode between Z-100's on the star network and remote
login and file transfer to computers that are hosts on ETHERNET or are ac-
cessible through ARPANET. The microcomputers in the cluster can share ex-
pensive resources such as laser printers, the Gemini multi-level secure
system, the ETHERNET medium, and the network control processor.

Components of the system are programmed in the Janus/Ada programming
language for both the Z-100 microcomputers and the Intel 86/12A single

i board computer.
20 0 StRI9UTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

,=P.ANCLASSIFIED/UNLIMITED 0 SAME AS RPT -- OTIC USERS Unclassified -
22a NIAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

DPrn f [lnn Q_ - Vi (408) 646-2197 Code 52Kr
SDOFORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF ,HIS PACE

r. All other editions are obsolete
1 UNCLASSIFIED

L .a

..

Approved for public release; distribution is unlimited.

Janus/Ada Implementation of a Star Cluster Network of
Personal Computers With Interface to an ETHERNET LAN

Allowing Access to DDN Resources v'

by

Robert L. Hartman
Lieutenant Commander, United States Navy
B.S., United States Naval Academy, 1974

and

.Alec F. Yasinsac
Captain, United States Marine Corps

B.S., Appalachian State University, 1979

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
- -.

from the

NAVAL POSTGRADUATE SCHOOL
June 1986

.4

Authors: ____ -----------
e L. Hartman

1l c F. Y--na

Approved by: _ _ _ _ __ _ _ _

Uno R. Kodres, hesis Advisor

T Mactennan, Se nd Reader

Vincent Y. um, Chairman,
Department ot(Computer Science

Kneale T. Marshal -"-'
Dean of Information and Policy ences

2

, " .L , , . . - * % ...% .. , -% ° -, " % ., , % " . .• -% " • % % % . % . . .° . . . % , .% % . % " ." . " " " . . " , 4

0

ABSTRACT

This thesis demonstrates the viability of implementing

a local area network connecting a star cluster of Z-100

personal computers to an ETHERNET local area network and

allowing access to a wide area network, ARPANET, through a

host on ETHERNET, the VAX 11-780 minicomputer operating

under UNIX. The system allows local file and message -
, ...- $

transfer in port-to-port and broadcast mode between Z-100's

on the star network and remote login and file transfer to

computers that are hosts on ETHERNET or are accessible

through ARPANET. The microcomputers in the cluster can

share expensive resources such as laser printers, the

Gemini multi-level secure system, the ETHERNET medium, and

the network control processor.

Components of the system are programmed in the

Janus/Ada programming language for both the Z-100 -L..

microcomputers and the Intel 86/12A single board computer.

- 1 -1 ,.,..

," ./_ '-I,' * '~* : Accesion For
' "l'* -'''-" , (,, NTIS CRA&I :''':

DTIC TAB El ..Ui.an-o ,.ced .

By........
LI..t ;b io.:- I --- -- -

Avilbility Codes

A , 3 -d t or

3

- -b. •

.... ... , .*.. .*. .. *. * ~ , - °

DISCLAIMER

Many terms used in this thesis are registered4.

4. trademarks of commercial products. Rather than attempt to

cite each individual occurrence of a trademark, all

registered trademarks appearing in this thesis are listed

below the firm holding the trademark:

Gemini Computers Incorporated, Carmel, California
Gemini Computers

Zenith Data Systems Corporation, St. Joseph, Michigan
*Z-DOS Operating System

Z-100 Microcomputer

Microsoft Corporation, Belview, Washington
-' MS-DOS Operating System

Digital Research Incorporated, Pacific Grove, California
CP/M-86 Operating System
PL/I-86 Programming Language

Intel Corporation, Santa Clara, California
86/12A Single Board Computer
HULTIBUS Architecture

Digital Equipment Corporation, Maynard, Massachusetts
VAX 11/780 Minicomputer
VMS Operating System

Interlan Corporation, Chelmsford, Massachusetts
N13010 ETHERNET Controller Board. -

Xerox Corporation, Stamford, Connecticut
ETHERNET Local Area Network

Bell Laboratories, Murray Hill, New Jersey
4 UNIX Operating System

RR Software, Inc.
Janus/Ada Programming Language

United States Government
Ada Programming Language

4

P .0

TABLE OF CONTENTS

I. INTRODUCTION------------------------------------- 9

A. BACKGROUND----------------------------------- 9

B. PROJECT DESCRIPTION------------------------- 11

1. Proposed Capabilities------------------- 11

a.. Local File Transfer-------------11

Pb. Operations via ETHERNET----------11

2. Telecommunication Layers--------------- 12

3. Target Hardware------------------------- 13

C. STRUCTURE OF THE THESIS--------------------- 13

Ii. NETWORK AND HARDWARE CHARACTERISTICS------------15

A. GENERAL DISCUSSION-------------------------- 15

B. CONCEPTS------------------------------------ 17

C. PROTOCOLS----------------------------------- 20

D. NETWORK HARDWARE----------------------------- 24

III. REMOTE LOG IN------------------------------------- 36

IV. FILE TRANSFER PROTOCOL-------------------------- 40

A. INTRODUCTION-------------------------------- 40

1. FTP Purpose----------------------------- 40

2. FTP Description------------------------- 41

B. SYSTEM DESCRIPTION-------------------------- 42 ez

1. The Concentrator------------------------ 42

2. The Z-100--------------------------------- 44%

3. The Connection-------------------------- 46

S5

- -. - - - - - X

V. LOCAL FILE TRANSFER AND PRINTING--------------- 47

VI. IMPLEMENTATION SUMMARY-------------------------- 59

A. THE HARDWARE CONFIGURATION----------------- 59

B. THE SOFTWARE CONFIGURATION----------------- 61

1. The Operating System-------------------- 61

2. The Ada Programming Language------------62

a. Why The Ida Language?----------------62

b. Useful Features--------------------- 63

C. Problems---------------------------- 64

C. SYSTEM PROGRAMMING ON THE CONCENTRATOR --- 64

1. Resource Sharing------------------------ 65

2. Managing Memory------------------------- 65

D. THE SYSTEM DESIGN--------------------------- 66

1. The Structure of the Problem----------- 66

2. Principles------------------------------ 69

a. Remain Standard--------------------- 69

b. Modularize-------------------------- 69

3. Methodology----------------------------- 70

*a. Prototype--------------------------- 70

b. Top Down---------------------------- 71

1g.4. The Modules----------------------------- 72

a. Globall----------------------------- 72

b. Poller------------------------------ 73

c. TELNET------------------------------ 73

d. FTP--------------------------------- 74

e. Local------------------------------- 74

6

f. TCP----------------------------------- 75

g. IP------------------------------------ 76

th. ETHERNET------------------------76

VII. CONCLUSIONS--------------------------------------- 76

APNIA:PORMIGNOTES------------------------- 78

APPENDIX B: PROGRAM MAINTENANCE MANUAL--------------- 88

APPENDIX C: USER MANUAL FOR TELNET------------------- 143IAPPENDIX D: USER MANUAL FOR FTP---------------------- 149

APPENDIX E: USER MANUAL FOR LOCAL-------------------- 157 ~

APPENDIX F: LISTING OF CONCENTRATOR PROGRAMS-------- 164 1
APPENDIX G: LISTING OF Z-100 TELNET PROGRAMS-------- 241

APPENDIX H: LISTING OF Z-100 FTP PROGRAMS----------- 245

APPENDIX I: LISTING OF Z-100 LOCAL PROGRAMS--------- 272

APPENDIX J: LISTING OF Z-100 MULTI-USE PROGRAMS --- 317

APPENDIX K: GLOSSARY---------------------------------- 334

LIST OF REFERENCES-------------------------------------- 338 -

INITIAL DISTRIBUTION LIST------------------------------ 339

I%'

I ---7

LIST OF FIGURES

1.1 System Network Configuration -------------- "1

2.1 DDN ARCHITECTURE -------------------- 1

2.2 Sample Host Name ------------------- 2

• . a. 4.o.

2.3 User Datagram Header Format ---------------- "2

2.4 RS-232 Pin Connections -------------....- 2

2.5 MULTIBUS/ETHERNET Connection ------------- 2

2.6 ETHERNET Report/Reset Format ------------ 2

2.7 Receive Data Block in MULTIBUS Memory -8-"-"--"28

2.8 ETHERNET Interrupt Handler Code ------- 30 ;

2.9 Transmit Data to ETHERNET Code -------- 31 "

2.10 Receive Status Block Code ------------- 3

3.1 TCP/IP Protocol Headers ---------------- 3

4.1 FTP COMMAND/REPLY SEQUENCE ---------------- 4

5.1 Local Protocol Datagram Format -------------. 4

6.1 Serial Port Cable Pin Connections ----------- 6

6.2 Handshaking State Diagram ---------------- 6

6.3 Protocol/System Layers ----------------- 6

6.4 Concentrator Package Structure Chart ----- 68

6.5 System Level 0 Diagram ----------------- 7

8" -'

8 .''::i-:'K
l '.1 o

•

LIST OF FIGURES

%A.

I. INTRODUCTION

*A. BACKGROUND

The AEGIS weapon system is critically dependent on

electronic communication between computer systems.

Microprocessors are clustered in a star configuration and

V. connected to other c-lusters with ETHERNET. These networks

are interconnected to other networks to form large

communication and processing systems. Software development

and resource availability are areas of research within the

AEGIS development project.

A testbed for research in this area is a MULTIBUS

computer configuration comprising multiple single board

computers connected to a minicomputer over an ETHERNET

Local Area Network. This testbed proved suitable to develop

a prototype local area network connecting a cluster of

microcomputers to a minicomputer across ETHERNET using a

single board computer as a concentrator. Figure 1.1

graphically depicts the configuration. Implementation of

this LAN allows sharing of expensive resources by clustered

processors and allows software development to be

A distributed across the cluster.

A large volume of previous research applies directly

to this thesis. The research conducted to allow

I ~programming and testing on the single board computer within --

9

AS.'...'

'V

.1'.. '4.

I VAX I I VAX I I IRIS
OTHERS I I UNIX I VMS _ I _UNIX.

CNTLR I I NIl010 I CNTLR I I CNTLR.I ________I I ________ I I ________ I ---________

ETHERNET ._____

NI3010

I ..I

86\12A I

I "I"V

I PORT I"I ____._- I I
i -- __ ___i __ ___ __ __.'
/ /\\--,:

S.... -./

I Z-100 I I .-:0o I ..I .-:0o I IPRINTERI
I _ _ _I i__ __ I I _ __I I _____:"

Figure 1.1 System Network Configuration
10" °

,'. . .

-S.-

i0Si"",.

.4. °

10'.::

* 1. ..

the multiuser system and the working programs that allow

interface with ETHERNET provided the foundation for our

work. This thesis is a direct follow on to the thesis done

by Lt. Col. Don Reeke, USMC, [Ref. 1]. His research

provided some background in TCP/IP protocols and included a

program written in PL/I which provided a capability to

monitor communications on ETHERNET. Another program was

able to mimic TCP/IP protocols and navigate the layers of

protocol to initiate communication with a foreign site over

ETHERNET. This thesis extends that navigation to allow

login, logout, and file transfer with a remote site over

ETHERNET.

B. PROJECT DESCRIPTION

1. Proposed Capabilities

a. Local File Transfer

The 'star' network configuration allows

efficient single or multiple file transfer. Any two micro-

computers in the cluster should be able to transfer files

in either direction asynchronously. Additionally, any

micro-computer should be able to transfer files to multiple,!11177

computers at the same time. This feature should prove

particularly useful to instructors and system maintenance

personnel.

b. operations via ETHERNET

The concept employed is to allow a user of a

microcomputer on the cluster to act as a remote terminal to

11..

.1.-

any of the computers on ETHERNET. A user may enter a

process that allows him or her to transfer files to or from

any computer on ETHERNET. The user may also login to a

remote host and perform any functions available to a

• terminal directly connected to that system. A user

desiring to retrieve files from a system on ARPANET may use

the remote login capabilities to connect to the remote

system, trigger the file transfer system on the remote

system to retrieve a file from ARPANET, then transfer the

file to the microcomputer using the ETHERNET transfer

process.

2. Telecommunication Layers

Though a detailed presentation of network layers is

presented in [Ref. 2], some general comments are

appropriate here. This thesis required attention to six of

the seven ISO standard layers. These six are the physical,

data 1 ink, network, transport, presentation, and

application layers. The physical layer is the ETHERNET

interface board, the data link, network, and transport

layers are handled by TCP/IP, the presentation layer is

FTP/TELNE'T, and the application layer is programmed on the

microcomputers. TCP/IP is the protocol accepted by the

target mainframe computer and is also an ARPANET standard.

A more detailed summary of the network layers is contained

in Chapter III.

12

'p7

~ .4

3. Target Hardware *

The proposed local area network consists of up to

twenty microcomputers, the ETHERNET cable and its

interface processor, a mainframe computer, and a single

board computer with multiple RS-232 ports accessed via

MULTIBUS. .*

Much of this thesis is dedicated to writing .*

software for the computers involved. The single board

computer will operate in.total on software created for this

thesis. All of the application level software for the

microcomputers was written by the authors. The primary

task has been producing the software to match the protocols

presented by ETHERNET, TCP/IP, and FTP.

C. STRUCTURE OF THIS THESIS o

At the heart of this thesis is the code to allow

implementation of the network. The text provided is

intended to convey the purpose behind design decisions, p-

explain problems encountered, facilitate maintenance

programming, and explain operating procedures. Chapter II

contains descriptions of specific network characteristics

and hardware/ so ftware that apply to the system. Chapters

III, IV, and V are descriptions of the major subsystems of

the project: remote log in, remote file transfer, and

local file transfer. Chapter VI is a summary of the

network implementation strategies and procedures. Our

appendices include a users manual for the Z-100 software, a V-

13

'r --

L-.
program maintenance manual for all original software, a-...

glossary of acronyms and terms, a bibliography, and helpful Fk ,VI
figures and charts. :

,I

9. . ".,

S.t

9.?

,% .

.1*-.

, 4

;, ~...• ' "S..-

II. NETWORK CHARACTERISTICS

A. GENERAL DISCUSSION

Networking has evolved over the years to include large, -'

worldwide, real-time systems that share resources under

many services. The Defense Data Network is one such system

that is central to our discussion.

Defense Data Network (DDN) is a powerful operational

military network composed of several large subnetworks

including MILNET and ARPANET. Originally ARPANET was one

large subnetwork which has split into the present two

subnetworks. ARPANET is primarily for experimental research

and development while MILNET has become more of a semi-
4

fixed, operational network utilized by many activities.

These networks allow easy and quick communication between

users hundreds and thousands of miles apart, round table

discussions with several users, information sharing,

passing programs and tools to enhance local capabilities,

remote login to host computers and electronic mail. The

three major services of the network are electronic mail,

file transfer and remote login [Ref. 3].

The most used service on the DDN is electror- mail

service [Ref. 3]. A system has been implemented which

allows users to send messages electronically to one

another. The system stores the messages that come in for a

15

S .

user until he or she has time to read and act on them.

Mail can be printed, read, deleted and replied to with

little effort. To send mail to another user, one simply

specifies their network mailbox, usually of the form:

USERNAME@HOSTNAME. Most hosts implement some form of mail

handling capability.

File Transfer Protocol (FTP) is another service on DDN '.-.o°%

which allows moving a file from one computer to another.

The enhanced features of FTP allow conversion from one file A
storage format to another. -

TELNET is a protocol used to log in to a remote host

from a local host. Once logged in, users are able to use a

remote host as if they are using a terminal directly

connected to that remote host. Files can be accessed, data

entered and programs run from a remote location. TELNET

maintains three basic principles:

1. Each terminal is made to appear as a virtual terminal
(ie. all terminals appear to be the same to the
hosts).

2. Options must allow more sophisticated terminals to
use their built-in functions.

3. Rules are implemented to prevent infinite loops of
acknowledgements sent back and forth.

The Network Information Center provides services to

users of the network. Among the services are:

1. A program named WHOIS/NICNAME, that looks up

information in an electronic listing of network
users. This service is much the same as "white pages"
in a phone directory. A local host program queries

the NIC database for information on users of the
network. Searches are made by name, partial name,

16

Ak ~ ~ ~ A-4 °,-- l

handle (in case of multiple "hits"), hostname, TAC, %
and Node name;

2. NIC/QUERY is a browsing system to access the general_.
information stored by the DDN.

3. TACNEWS offers help to TAC users. *4

B. CONCEPTS

The DDN uses Packet Switch Node (PSN) computers which

pass information in packets to a destination. The packet

contains information such as destination node, source ncle, "

and other information that is explained in more detail in
** JChapters III, IV and Appendices A and B. The packets are.*CatrII, IVadApedce- ndB hepcet r

.. '*. V.

sent out to the destination without a predetermined,

dedicated path. Circuit switched networks, on the other

hand, create a dedicated path to the destination which is

used from the first packet to the last or end of

connection. In packet switched systems a packet that was

sent may reach the destination before an earlier packet.

Information must be contained in the packet to put the

packets back together in the correct order. Packets are

also broken up into smaller packets if neccessary for

transmission to hosts with smaller size packet capability.

What previously was termed an Interface Message

Processor (IMP) has been replaced with PSN (name only) as

discussed above. The PSN's are the backbone of DDN
"..,..

providing the hosts connected to them the necessary network .. ,

interface. Packets are assembled in a host and sent to a

PSN which passes it on through the network. Since networks

17 .

, - .",

• . . .

- -j6 ZU TV 7Y A

.e..

do not universally guarantee that all packets will actually ...

arrive at the destination, a reply packet is used to

acknowledge receipt of packets. Timeouts are used to

retransmit packets not acknowledged.

Figure 2.1 depicts a typical network structure. A

terminal may be connected to a host directly, through a

telephone connection (using a modem), through a local area

.0 network (LAN) or via TAC. The hosts, in turn, are

.5. connected to a PSN which are in the wide area network. A . .

gateway can then connect one network to another. In order -

to ensure that connections can be made across networks, a

coordinating agency must oversee the use of destination

addresses and host names. The Defense Communications

Agency coordinates network usage much like the FCC oversees

the use of the airways by broadcast stations. An address
.A ,%

of a host would include the network number, PSN number, and

host port number on PSN. The network number for MILNET is

26 and for ARPANET is 10. A sample host name is shown in

Figure 2.2.

Personal computers (PCs) can be used to access the

network. At the present PCs are used only as terminals to

a host connected via the various ways mentioned previously.

The DDN Project Management office is studying various means

of connecting PCs to the network, including allowing them

host status. Eventually, as the capability of PCs %

d.

18 - "

.5. % " • " . - .. • . . % % " . , . . . "i,••% . °% •- -- " -, ° . , ".•. "-" •, ". % ' ","%

------ -

+-------- I host I I TAC I
i host -------- + --------
+- \ i------

IPSN I * * iPSN I
I. * * \- -....

-------- * IhostI
I host I * * -------- -.
-------- NET *

LAN I * * ..I * * I lS _

* 1 LAN
+--~~~~~-------- * ---------- +-----

I PSN I * * i PSN I-I host I
+-------- *********** +-------- +--------

------ + -------- LAN
host I I host I.-------

+-------- --------------- +--------

I GATEWAY I

--------------- --------- +-------- 4
.1

+-------- i ihosti ITAC j
I host I -------- +--------

-+ *************** +----------+..

iPSN I * * IPSN I
+ * * * - .*

+ / +** * I hostI
host * * -------- +

+--------i* NET *
LAN I * *

• * I LAN
+----------_--------

PSN I * * IPSN I-I host "+------- *************** .4------- +---------+

+-------------------------
--- -- + LAN ,,*,

I host l Ihost I -------
+-------- +--------

FIGURE 2.1 DDN ARCHITECTURE

19

• . •%

. - .,, q ..-. .. , - -.- . .. , .. , - . , .. , .:,_- , , , . ..,.Sw .

AMES-VMSB 26.3.0.16 r-.-

26 Network number
3 Host port on PSN
0 Reserved
16 PSN number

Figure 2.2 Sample Network Host Name

increases, they will be able to implement the network -

protocols and will attach directly to a PSN.

C. PROTOCOLS '.- .,

To implement a network system such as DDN, standard

protocols have been adopted. The Transmission Control

Protocol (TCP) and INTERNET Protocol (IP) are standard

protocols initially implemented for the Defense Data

Network in the early 1970's. The TCP is designed to be a

highly reliable host-to-host protocol in a packet switched

communications network. An in-depth description of these

protocols is contained in the SRI handbook [Ref. 2]. The

IP is designed to allow packet transfers across different

networks through "gateways," with fragmentation and

hireassembly occurring as needed. These protocols have been

implemented on many different systems using various

languages and under several operating systems. Much of the

background research for this thesis was to understand these

two protocols. Therefore, a brief discussion is now

20

U '

,%1.

.',;. , .', .'.',, ,.. .' ,' . ,.." ,,.', ',.'.,, " ", ,, " " " *" "" " "" "" " " -..-

provided to help explain the system requirements that have

been implemented.

Transmission Control Protocol is designed to provide

robustness in the presence of communication unreliability %

for military computer networks. TCP is a standard

interprocess communication protocol which can support a

broad range of applications. It is decl-ared to be the J,

basis for all DoD-wide inter-process communications. TCP

is a connection-oriented, end-to-end protocol to fit into a

layered hierarchy of protocols which support multi-network

applications. It assumes that the layers below it are

potentially unreliable datagram protocols. TCP can be used

in hard-wired connections, packet-switched or circuit-

switched implementations.

TCP interfaces with the upper layer user or application

processes and lower level protocols (eg. INTERNET

Protocol). TCP has the ability to transfer a continuous

stream of octets in each direction. To ensure that data is

not stored at an intermediate location awaiting more data,

a "push" control is employed to send the data through to

the destination. The network protocol underneath TCP is

assumed unreliable, therefore, data objects that are

damaged, lost, duplicated, or delivered out of order must %

be corrected. Each byte of information is assigned a -

sequence number, requiring a positive "acknowledgment" sent

from the receiver. Damaged packets are identified by two .. -.

21

°-• . . o . S. % % S ./S . • . .. • .- s v % -. % - , S . .% ... X . a .% o ". . %* - - . .

-,~~~~~M 77.- .- .-.. ~.-~

I

checksum fields. A means of controlling how much data is

sent by a sender in any one packet is available to the

receivers. The maximum amount to be sent is governed by a

"window" field describing the maximum a potential receiver

is willing to accept. Since only one copy of TCP is

normally stored and many users may need its service, a

method of multiplexing many processes in a single host is

achieved by use of -addresses or ports within each host.

Concatenation of port addresses and the host addresses

enable identification of the destination by this socalled

"socket." Since local sockets may be used by several

foreign processes at the same time, a pair of "sockets"

identify a connection. Consider, for example, a remote

login from a foreign host. A "well-known" socket for

remote logins is 0017 hex. If two different foreign users

desired to do a remote login at the same time, the local "..

socket for both would be the same (local host address and

the well-known TCP socket address). The distinction

between the two connections is made by inspection of the

foreign socket. Since the connections are by two different

hosts, the host addresses will be different. If two users

from the same foreign host wanted to do a remote login, the

separate connections can also be distinguished by the

distinct port number assigned to them by the foreign host.

A host cannot assign the same port number to two different

22
2 '.''.'<-'

,i" ",,,.- , ,--'""" " "_ ..,' ..:_.-.._ "-' "'".'--""_._. _ _."-_...- : -''"" _ . .: _ - _- - .-... , ..::.::°::::-.'- :.-h-h::.:-_:-:.-,-::'_.:- -

processes. TCP also allows users to indicate the security

level and precedence relation of their communications.

INTERNET Protocol is the layer below TCP and interfaces

with the drivers of the physical network. It allows the

TCP to send and receive variable-length packets of
I.. .

information enclosed in INTERNET datagram "envelopes".

Inter-network communication is provided by the addressing

employed in the IP envelope. IP also handles fragmentation

and reassembly of packets. For example, if a datagram

arrives containing 2K bytes of information and must be sent

over a network that can only handle 1.5K in one packet,

then the IP will fragment the datagram into two datagrams

and provide necessary information to reassemble them at a

later point.

Application processes rely on TCP and pass to TCP a

buffer containing data to be sent to the other process on

the connection. TCP serializes the data with sequence

numbers, checksums, etc., and sends the packet to the IP.

The IP, in turn, determines the proper route for the packet

to take across the network by the addresses listed in its

header. It also fragments the packet or combines several ..-

fragments as necessary to comply with the requirements of

the route the packet is taking.

A User Datagram protocol is used to send messages to

other programs with a minimum of protocol mechanism. The

protocol is used above IP and is transaction oriented. It

23
2 3 * -..- ,

does not guarantee protection against duplicate packets

being sent. Format of User Datagram Protocol is shown in

Figure 2.3.

0 7 8 15 16 23 24 31
+- --------------- - -------------

i source i destination i
, port , port ,
------------------ +------------------------

i length I checksum I
------------------ +------------------------

i data bytes...
+----------------------

Figure 2.3 User Datagram Header Format

D. NETWORK HARDWARE

To implement a network system, the hardware used to

construct the network must be understood. The CCITT

(Consultative Committee for International Telegraph And

Telephone) specification X.21 is a standard for connecting

terminals and networks, a general purpose interface for

synchronous operations on public data networks. The X.21

(15 pin connectors) interface applies to the first level of

the ISO model and is served by other interface standards

such as RS232C (25 pin connectors).

The CCITT specifies an X.25 standard interface protocol

for a Data Terminal Equipment (DTE) to attach to a packet- V

switch network using Data Circuit-terminating Equipment

24>". --

. ~~24.-.-."

...- :..

(DCE). The interface between the DTE and the DCE is

described in [Ref. 4].

The Electronic Industries Association standard RS-232

was originally developed to foster data communications on

public telephone networks with use of a modem (modulator-

demodulator). Since development in the mid-60s, the RS-232

has been used to directly connect terminals to computers

without use of the ph-one lines and modems (except for truly

remote connections). Figure 2.4 shows the RS-232 interface

with communications equipment.

terminal or computerI I modem or other equip

ring indicatorl<--22 22<--Iring indicator
data term readyl-->20 20-->Idata terminal ready
carrier detectj<--8 8<--Icarrier detect

I-7signal-gnd7-I
data set readyj<--6 6<--Idata set ready

clr to sendl<--5 5<--Iclr to send
req to sendl-->4 4-->Ireq to send

receivel-->2 2-->Ireceive
transmit -->2 2--> Itransmit

I ------------ 1
shield gnd "-- - - - - - - -

Figure 2.4 RS-232 Pin Connections

An ETHERNET network is a local area network (LAN) that

is capable of transferring data at 10 megabits / second

over a 2500 meter coax cable. The ETHERNET cable and the

associated transceivers that connect to it make up the

physical layer of the ISO model for a network.

25 - "

S:::-:.:

"a _., '.'. .:_ . 4 . 1_ -- .L . t,' ' a. ' .' - -'a" ' -""/ar f . , . * t . * ' q.Mi4-, . * *-"% " '- .t.'-.--Jd_ e-2.£, .-..-

Interlan's MULTIBUS ETHERNET communications controller

board (N13010) is a single computer board that provides a

host with a connection to an ETHERNET network. It complies

fully with the Xerox/Intel/Digital ETHERNET specification, "

version 1.0. Figure 2.5 depicts the controller board's "...

implementation.

MULTIBUS ETHERNET .
communication
controller

i

I connecting cable

I tran- I ' 1
I sceiver I coax cable

,.%* 4

Figure 2.5 MULTIBUS/ETHERNET Connection

Some of the N13010 Board modes:

1. Go offline - Logically disconnects the board's
transmitter and receiver from the network.

2. Go online - Logically connects the board's -

transmitter and receiver to the network.

3. Run Onboard Diagnostics - Executes an onboard
diagnostic program. Figure 2.6 lists the diagnostic
outputs.

26 4

-* %

f ield number of bytes
1. null 2
2. frame length 2
3. physical address 6
4. number of frames received 2
5. number of frames in receive FIFO 2

P.6. number of frames transmitted 2
=7. number of excess collisions 2

8. number of collision fragments 2
9. number of times 1 or more lost 2
10. number of multicast frames accepted 2

P.11. number of multicast frames rejected 2
12. number received with CRC error 2
13. number received with alignment err 2
14. number of-collisions 2
15. number of out-of-window collisions 2
16. reserved for future use 16
17. module ID 6
18. null 1
19. firmware ID 6
20. null 1

Figure 2.6 ETHERNET Report/Reset Format

4. Load Transmit Data and Send - Informs the board that -4
it now has a block of transmit data and commands it
to transmit it.

d5. Reset - Goes to power-up state.

6. Insert Source Address Mode - Causes the board to
insert its own physical address into the source field
of the ETHERNET frame.

ETHERNET physical addresses are 6 bytes in l ength. The

first 3 bytes are assigned by Xerox and the last 3 are

assigned by tne manufacturer of the ETHERNET board. The

ETHERNET frame format is shown in Figure 2.7.

Programming requirements of the N13010 board given by

the manufacturer fall in 4 categories:

1. Handling an interrupt by the N13010.

2. Issuing an N13010 command

27

-~rr -* - -. - -. --

I frame status

nullI

I frame length <7:0>

I frame length <15:8>

Idestination address (A)lI

Idestination address (B) I

I destination address (F)lI

--- source- address- (A)----

I source address (B) I I

----- ---- ---- ---- ---- --- frame length

- - - - - - - - - - - - - - - - - -

I source address (F) I I
- - - - -- - - - - - - - - -

type field (A) I I

type field (B) I I

dataI I

I 1500 bytes maximum I
--- -- ---- -- --CRC- --

CRC

CRC
- - - - - - - - - - - - - - -

CRC

Figure 2.7 Receive Data Block in HULTIBUS Memory

28

3. Transmitting data to the ETHERNET

4. Receiving a status block from the N13010

There are 7 kinds of interrupts possible, only 3 are

discussed: receive-block-available, receive-DMA-done and

transmit-DMA-done. Interrupts are enabled by writing to

the interrupt enable register with the proper interrupt

code. The state of the interrupt processor, identified by

the type of the last interrupt received, is recorded in a

*44 variable since the interrupt enable register is write only.

Interrupts must be disabled prior to handling the interrupt

enable register because an interrupt may occur at any time.

After a command is issued to the N13010, the status

register must be read. The N13010 documentation contains

code specification for interrupt handling is shown in

Figure 2.8.

A command is issued to the N13010 by writing to the

4. command register, then waiting until the interrupt status

register shows that the status register is full (SRF bit =

0
1). The status register is then read.

The data to be transmitted by the N13010 is transferred

to it then a command to transmit the data is issued. The

host must first allow the N13010 to finish any DMA in

progress before trying to transfer data to it. The code

listed in Figure 2.9 details the manufacturer's algorithm

to transmit data.

29
-.

. . ' - -. 4 4 .V•~' . % .~

- - - - - - - - - - --------- - -.- - - - * - ~.*

A .r... -

disable CPU interrupts
get current IE REG contents
set IEREG toO

if IE REG was a 4 then,
'load bus address registers
load byte count registers
set IE REG to 7

end if

else if IE REG was a 7
wake up receive packet process
give it this packet -'I
set IEREG to 4 4

end else

else if IE REG was a 6
set IEREG to 4

end else

enable CPU interrupts

Figure 2.8 Ethernet Interrupt Handler Code

? 3 0 .- ,

..
: .'r -

9-' 30 .

-4
r. .%:..- ,

---- ---- ---- --- - -.- .--- -- -
-

- - - - - - - - - - - -- - - - -- - " " -

disable CPU interrupts I

while IE REG is not a 0 or 4 do
enable CPU interrupts
repeat

read IE REG
until IE REG-is a 0 or a 4
disable CPU interrupts

read IE REG
end while

I set IE REG to 0

enable CPU interrupts
load bus address registers
load byte count registers

disable CPU interrupts
set IE REG to 6
enable CPU interrupts

if IE REG is a 6 then
wait until it is not a 6

end if

issue a load-transmit-data-and-send command

Figure 2.9 Transmitting Data to ETHERNET

After issuing a command for status, the host reads the .Ia....

interrupt status register (IS-REG) until the status-block-

available (SBA/) bit is high, indicating that no more

status information is available. The status register is
.W,

read when the SRF indicates the status register is full.

Figure 2.10 lists the algorithm.

The 86/12A single board computer is a complete computer

system on a single printed-circuit board. It includes a 16 N.

bit 8086 CPU. 32K expandable to 64K bytes of dynamic RAM,
.4 .4%

% I

• 31 -.. ,
.A-

repeat
read IS REG
if SRF is 1 then

read s REG
I, end if ,

until SBA/ is 1 - *

Figure 2.10 Receiving a Status Block

a serial communications interface, three programmable

parallel I/O ports, programmable timers, priority interrupt

control, MULTIBUS interface control logic, bus expansion

drivers for interface with other MULTIBUS interface-

compatible expansion boards, and up to 16K bytes of ROM.

Of primary importance is the I/O addressing assignments

for the iSBC86/12A. Table 2.1 lists the possible port

assignments.

The Zenith Z-100 computer is a dual processor 8085/8088

unit with several on-board hardware capabilities. Some of

the hardware features include:

model number description

8259A Programmable interrupt controller

68A21 Peripheral interface adapter

2661 Enhanced programmable
communications interface

8253 Programmable interval timer .. S*-

3....

~.%

The Z-100 has two serial ports (J1 and J2), both of

which are connected through the 2661 communications

interface. J1 is the primary printer port while the J2

port is the primary modem port.

TABLE 2.1,

86/12A 10 ASSIGNMENTS

I/O address IC Function
00CO 8259A write: ICWI, OCW2, & OCW3

or 00C4 PIC Read: status and poll
Programmable

00C2 Interrupt write: ICW2, ICW3, ICW4,OCWl
or 00C6 Controller read: OCWl (mask)

00C8 write: port A (ji)
8255A read: port A (jl)

00CA PPI write: port B (jl)
read: port B (jl)

00CC Programmable write: port C (ji)
Peripheral read:port C(jl) or status

OOCF Interface write:- control
read: none

0ODO write:countero(load cnt/N)
8253 read: counter 0

00D2 PIT write:counterl(load cnt/N)
read: counter 1

00D4 Programmable write:counter2 (load cnt/N)
Interval read: counter 2

00D6 Timer write: control
read: none

--D8 write: data (j2)
or OODC 8251A read: data (j2)

ODA USART write: mode or command
or 0ODE read: status

The 8538 8 Channel Communication Expansion Board is a

fully programmable synchronous or asynchronous serial

communication channel with RS232C interfaces. The 8538

contains IC2651 USARTs for serial communications with other

33

0~. *~* . * . o * -..

... ~' % ~ * * *** * . . . % *** **'..*****. ** .•.

I

devices. The 8538 is compatible with the MULTIBUS system.

The board's addressing registers in each USART are

optionally addressed as memory mapped locations or port

addresses. There are 4 locations for each USART that we

may be concerned about, the data register, the status

register, the mode register and the command register.

These memory locations are 0-3 respectively for port 0, 4-7

for port 1, etc. These address locations are added to a

base address that is selectable by DIP switches on board

the 8538. The total address space given to one board is

64, therefore, a second board would start at 40 hex if

consecutive address locations are desired and the first

board started at address 0. The four register addresses

for each USART extends only to 20 hex, however, the

remaining port addresses are given to interrupt handling,

which is not used in the implementation of the system. The

port addressing is shown in Table 2.2.

34

~~~~~~~~~~,... . . . . . . . . . . . . . . . . . .. .- p .*

~ ..c~..~. .-, --. -
____ ____ ____ ____ ___ ____ ____ ____ ____ _ °



77.%

, % -%
I

TABLE 2.2

USART ADDRESSING

address (hex) function -
0-3 r/w data, status,sync/sync2/dle, mode, cmd
4-7 U ,, ,, ,,

8-B " "-
C-F ,
10-13 " " " "t
14-17 ".
18-1B
IC-IF
20,28,30,38 port reset register (write only) p
21,29,31,39 n/a"
22,2A,32,3A transmit interrupt register
23,2B,33,3B transmit interrupt requests " -

24,2C, 34,3C transmit interrupt mask
25,2D,35,3D transmit interrupt requests
26,2E,36,3E ring detects -
27,2F,37,3F n/a

. C-. .

-- Z

..

3 5 -"-"

C..-....,

**. . . . . . . ..o._ , , , • -,• . .--. *.-- , , .-.. . . . . . . . .*. - - %* .* . .... .. C- *_ . **C



III. PROTOCOLS FOR REMOTE LOGIN

The Protocol used for a remote login into the VAX-

11/780 Unix system is that of TELNET described in [Ref. 2].

Lower level protocols use TCP/IP and ETHERNET for the

transportation, physical, data link, and network levels of

the ISO model. TELNET is a host to host communication

protocol to allow a user to login onto a remote computer

after first logging in on another, perhaps local computer.

Once logged in to the remote host, a user can then enter

data, run programs or do any operation that is allowed had

he logged in directly. A typical remote login sequence is

[Ref. 3]:

1. Login to an initial host *

2. Invoke the TELNET program on that host ~p.
3. Identify the remote host you wish to access by host

name or host address.
4. Once connected to the remote host, login withiusername and password for that host.
5. When finished working on the remote host, logout,

then break the connection (if not done so by logging
out). Return to the initial host for further
processing.

A specialized use of TELNET is to connect to a

particular well-known socket (assigned port) on a remote

host. A connection such as this takes a user to the

program or service offered on that socket. For example, to

perform a remote login, socket number 23 is used. 23 is

the well-known socket for such service. To transfer files K

between hosts, the well-known socket of 21 is used. To

36



% J

make the connection to the host, the complete address or

socket is used, which consists of the host's INTERNET

address as well as the TCP address or well-known socket.

An example of a socket is the we 1-known socket used by the S'-

Vax Unix of IP address of C009C803 hex and TCP address of

0017 hex.

On a more detailed level, to initiate a connection to a

remote host, the local host performs what is termed a

three-way handshake. To do the handshake, the initiator

sends a packet to the remote host with a control code of

'syn' (synchronize). The remote host should recognize the

'syn' and issue an 'acknowledgement' and 'syn' together.

These signals are simply a single bit set in a 6 bit

control code (see Figure 3.1 for protocol details). Once

the 'synack' is received, the initiator sends an

acknowledgement, completing the three-way handshake. When

the handshake is complete, the state of the connection on

each host is 'established'. This is when the user can use

the remote host as if he were directly connected to it. In

a typical connection, each character that the user enters

at his/her terminal is sent in a packet to the remote host.

The remote host will process that character and optionally -.

send or not send it back to the user's terminal. Most

entries are returned; however, passwords and such are not.

Every entry, therefore, is sent individually, wrapped in

the TCP/IP protocol as well as the physical network

37

~ .S *~~>- . . .



protocol (ETHERNET protocol). An attempt was made in our

implementation to send more than one character at a time. .

however, the BSD 4.2 Unix system did not recognize more

than one character.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 ."-

IVersion IHL {Type of Servicel Total Length

Identification IFlags{ Fragment Offset

Time to Live I Protocol Header Checksum

Source Address

Destination Address

Options I Padding

Source Port I Destination Port

Sequence Number
+-+-+-+-+-+-+-+- -+--+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ -+.

Acknowledgment Number

I Data I IUIAIPIRISIFI
I Offset{ Reserved IRICISISIYIII Window
I I IGIKIHITININI

I Checksum I Urgent Pointer

Options I Padding

data

Figure 3.1 TCP/IP protocol headers

When completing a remote login session, the user logs

out from the remote computer, which also causes the remote

computer to signal termination of the connection to the

38

3 8 ~-1-'



originating host. Once the connection has been terminated

by transversing the intermediate states [Ref. 2], the user

is returned to the environment of the local host.

TELNET is a very simple protocol above the TCP level.

Once 'established' the local host simply sends the

characters entered at the keyboard to the remote host by

passing them down to the TCP level. Any data returned from

the remote host is displayed on the user's terminal.

e.7,

IL

39'

-9 . .1 -

. ... ,

--. d



IV. FILE TRANSFER PROTOCOL

A. INTRODUCTION

1. FTP PURPOSE

File Transfer Protocol or FTP is a well documented

software protocol for transferring information between

computers within a network. The specifications for FTP are

contained in the INTERNET Protocol Transition Workbook

[Ref. 2, RFC-765].

This implementation of FTP is used to effect file

transfer and related operations between computers on the "

*: NPS LAN. This process does not allow exchange between Z-

100's, but only between a Z-100 and one of the

minicomputers on ETHERNET. The NPS LAN is not directly

connected to any external network such as ARPANET, so file

transfer beyond the local network can only be accomplished

by logging in to a computer on the local network that has

external access, in this case the VAX 11-780 operating

under UNIX. Once logged in, the user may utilize the

version of FTP implemented under UNIX to access computers

on the ARPANET and on other networks..*

The FTP implementation for this thesis did not

require all the features described in the FTP

documentation. The goal here is to allow only active data

transfers to remote sites, meaning no computer can initiate

40 e

~ 5.51 5.5 ~ ~ 5.5.. 5.j. .- ,.1...t .



7 7jM .V 47. 77 -1.-- - k &X-h' N -. 'T. -

a data transfer to a Z-100. This eliminates the need for

an FTP server process to handle incoming requests to a Z-

100. Additionally, the mail passing facilities of FTP were .*.. ,

not programmed. A user of this FTP system may request

transfer of a file to or from the remote computer, list the

directory on the remote computer, change the working

directory on the remote computer, ask for help, or

terminate the process. The specific FTP commands, replies,

and parameters that are included in this implementation are

described in the Program Maintenance Manual [Appendix B].

2. FTP Description '

FTP operates using two connections to effect

information transfer. A command connection is initiated by

the FTP requestor to begin the FTP process. This
4

connection is used to send control information between the

two sites before data is transferred. The requestor, or

user, sends FTP commands to the remote host, or server. The .

commands request the desired mode, file type, data

connection address, or service required, or reset or abort

the connection. The server returns FTP replies which

either acknowledge or decline the parameters or requests.

The discourse continues until agreement on acceptable

parameters is reached. When a data connection is required,

the server process initiates a TELNET connection to the

using site. When the data transfer (which includes a

request for a directory listing) is triggered by the

41 ...

"-

%ff ~ 4\4d .~a.**.A y.:- - ~. - - -. -- * - . . .



. . . ~. .

0-7 -7 W

requesting site, the data is transferred over the data

connection. The data connection is closed at the

conclusion of each file transfer to indicate that all data

has been sent. The data connection then must be

reinitiated if another transfer is desired. A typical

command/reply sequence is provided in Figure 4.1.

• USER TO SERVER SERVER TO USER

* EST CMD CONNECTION REPLY: 220 READY FOR SERVICE *
• * *.'-"

* CMD: USER <USERNAME> REPLY: 331 NEED PASSWORD *
.* *. - "

* CMD: PASS <PASSWORD> REPLY: 230 USER OK *

* CMD: PORT <ADDRESS> REPLY: 200 COMMAND OK *

* CMD: NLST (LIST DIR) REPLY: 150 OPENING DATA CONN ** * >
• I SEND LIST *

* -* REPLY: 226 TRANSFER COMPLETE *
*."I* CLOSING DATA CONNECTION *

* CMD: QUIT REPLY: 221 CLOSING COMMAND *
• CONNECTION *

Figure 4.1 FTP Command/Reply Sequence V.

B. SYSTEM DESCRIPTION

1. The Concentrator

The role of the concentrator is to route FTP

commands replies, data, and to establish and maintain the

command and data connections. When the concentrator polls

,. ° ° ° .

424



'N _N 7,_

a port that is in the FTP state, there may be three types

of information to be transferred in either direction. The _

three types are: control characters, FTP commands and

replies, and data.

Control characters are used to pass coordinating

information between the concentrator and a Z-100. Actions

such as aborting the process and establishing a new

connection are triggered by control codes. When a port

operating under FTP is polled by the concentrator, the

concentrator checks first to see if a control character is

coming from the Z-100. :~

Incoming data from the network is queued for the Z-

100 by attaching it to a pointer within the Port Control

Block (PCB) entry for the connection. If the data 7

connection is open, the concentrator checks for any packets

received from the remote site queued for the Z-100 and

sends any waiting data in its entirety. If no data is

* waiting from the remote site, the Z-100 is checked for data

to transfer to the remote site. If data is waiting from

the Z-100, a block is transferred to the remote host over

the data connection. If the data connection is not open, .

bytes received from the Z-100 are presumed to be a command

for the rerrote site and are transmitted to the remote site
V-91

via the command connection. -94

The concentrator acts only as a go-between for the

a'Z-l00's and the network. The concentrator makes no effort

4

434



to recognize FTP level information or generate data on its

own. Its responsibility is to pass data, maintain the

connections at the TCP level and coordinate with the Z-100

concerning data origin.

2. The Z-100

The Z-100 maintains the dialogue with the remote !...:

FTP server process. The host-to-host FTP transfer utilizes

separate virtual connections for control and data transfer

so control information cannot be intermixed with data. The

Z-100's do not have access to the two connections in the .:

cluster configuration. Control and data must be passed

over the same serial line connecting the concentrator and

the Z-100. Clearly, additional means of communication

between the concentrator and Z-100 must be implemented.

This is done through the use of a header field implanted as _

the first byte in reply, command, and data transmission

data streams. There is also a presumption of some degree

of sequencing. For example, an FTP command can only be

followed by an FTP reply.

The structure of the Z-100 process closely

resembles the structure of the FTP system. The Z-100

process, termed the user process, is driven by the sequence

of FTP commands and replies. The process is begun by

initiating the FTP command connection which results in an

FTP reply from the remote server process. This reply is

captured and an appropriate command is sent to the remote - P

44

.5.



* * - .. . . . . . . . . . . ..--- - - -

server. A reply to that command will ensue and the

dialogue continues until the user or the server process

terminate the dialogue and the process ends.

The Z-100 is primarily concerned with maintaining

the FTP dialogue. The FTP command/reply cycle is not

perfectly one-to-one. Several peculiarities may be '

encountered. For instance, all commands sent to the server "'•

will trigger a reply, however, some commands will trigger .

more than one reply. Similarly, some, but not all, replies

require a command be sent in response. For example, the

reply '331' means that the user name is accepted and a

password command is needed, while the reply '200' indicates

that the previous command was accepted but does not clearly

suggest any further course of action. To further complicate

the issue, many FTP replies are acceptable responses to

several different FTP commands and the necessary action may

be dependent upon which command was sent. The state of the -

process is identified by knowing the last reply and the

last command.

The peculiarities noted are handled in the

procedure that processes replies. When a reply is received

and conditions are right to receive another reply without

sending a command, preliminary action is taken without a

command being generated. When no action is indicated by

the system, the user is prompted to select an option which

triggers an FTP command. The system is designed to be

45

.; 'A.



robust. Even if unexpected replies are received to a

particular command, the system will continue to transfer
dr

data and converse with the remote site.

3. The Connection

The connection between the Z-100 and the

concentrator is a six wire line connected to the Z-100

auxiliary port. The connection is an RS-232 standard and

DTR/DSR handshaking; as described in (Ref. 2), is used to -*

pass commands, replies and data. Control characters are

passed under cleared DTR/DSR. Two specially coded

subroutines handle all handshaking and perform actual data

transfers. Due to speed considerations, data is passed

only to and from memory in the Z-l00 in blocks of not more

than five hundred and twelve bytes. When a complete packet

has been received, the data is either displayed on the

screen as a directory list or delivered to the destination

file.

46'

I :*.



V. LOCAL CONNECTIONS2

This chapter deals with the microcomputer-to-

microcomputer connections used for transferring files,

sending messages etc., within the Aegis star cluster

network configuration. Since there was no requirement to

interface the local connection system with any otherI systems, it provided the opportunity to implement a totally

0 original scheme for networking. The following requirements

were considered in our design phase:

1. Files are to be transferred between two computers
with error detection and correction.

2. Files are to be transferred between one computer and
two or more other computers with error detection.

3.Files are to be transferred between any computer and
the local printer. The printer is to be connected to
the concentrator identical to the computers.

4. Only one computer can transfer files to the printer 6

at any given time (a non-sharable asset).
To carry out the above requirements, a new protocol was

developed similar to the 'user datagram' described in

Chapter II. A layout of the protocol is given in Figure

5.1. .

once a connection is established between two

microcomputers, an application program running on one

microcomputer simply sends data to the other by specifying

the destination terminal in the first byte sent. The2

source, type, checksum and length fields are also

47



----------- t.

IDEST
+ -- - +
ISOURCE

+----------
ITYPE

+----------

+----------

+---------- s

I LENGTH21
+----------

+ DATA +
1 (512) I
+ +

+----------

Figure 5.1 Local Protocol Datagram Format

C%'

available, however, are not required in sending data. The

fields in the header allow enough flexibility inI programming application programs to enable some level of

sophistication. The packets sent from one micro can be

broadcast to all other microcomputers connected in the same

'group' by using FF hex in the destination field. A

'group' connection is created in the concentrator when a

terminal initially connects to another. If the other

terminal already has several terminals connected with it, .*

the new terminal is simply inserted into the 'group'. A

terminal remains in a 'group' until 1) it terminates the

local connection, 2) all other terminals in the 'group'

C terminate, or 3) the terminal performs a group transfer

48



,....,

(command 'Change group') to attach itself to another

'group'.

To fully discuss the local connections, a discussion of

the process running on the concentrator will be followed by

a discussion of a sample application program that allows

multiway transfers of files, directory listings and message

exchanges, all somewhat concurrently.

The concentrator executes a 'local' process during

microcomputer-to-microcomputer transfers. A microcomputer

can invoke a local connection by sending a control code

'codeloc' to the concentrator. The concentrator returns

that code and changes 'pcb.state' to 'loc_init.' The next
*.1 .P .,

byte expected by the concentrator from the microcomputer is.,

the destination port address. Once the destination port

address is received, the concentrator checks the state of

the destination to verify that a connection can be made.

If the connection can be made, the concentrator sends

'code estab' to the microcomputer. If the connection

cannot be made, the 'pcb.state' is set to 'listen.' If the

destination terminal was in state 'listen' then it too will

be changed to 'local' and 'code estab' sent to it. If the

destination state was already local, no code is sent to it.

When the terminals are established in a local connection,

their Port Control Blocks (PCB) are linked together with

pointers. Any additional terminals that connect to one of

these terminals are simply inserted in the linked chain of

49

.... ... . .. * . . . . . .. ",



PCB's. All PCB's linked together in this fashion and their

respective terminals are considered to be in a 'group'

connection. There may be several 'group' connections

existing at the same moment yet not associated with each

other.

In addition to the connection link (PCB field 'loc_con'

is used in each PCB to do the linking) each PCB is linked

in the 'poller' routi-ne to enable polling of each terminal.

There are, therefore two linked chains, one for local

connections and one for polling all active terminals. The

active terminals are using various processes such as TELNET

or File Transfers to other hosts on the ETHERNET. The

poller routine polls each PCB individually, calling the "

appropriate process to handle the particular state of the

PCB.

The method of transferring packets over a local

connection is divided into three catagories:

1. Direct microcomputer-to-micro computer

2. Broadcast to all in the local connection

3. Microcomputer-to-printer.

The microcomputer-to-microcomputer communication is

implemented by receiving a packet from a terminal and

determining who to send it to by looking at the first byte

(destination field). The first byte is overlayed in the X.

window(l) byte of the memory block (see Appendix B). If

the first byte is out of range for the number of

50 "" "-.S "-.-.:

. *" ."-i

* - * - • -* - . . .. J*-*-* . . . ... - - -. . . . . . . . . . . . . • ]..-*.



destinations available (O..num_prts) then the packet is

discarded. If, however, the destination is a valid port--''

number and the destination state is 'local', then two tasks

must be performed:....

1. A bit is set in the originating PCB to indicate who
must receive that packet

2. A bit is set in the destination PCB to indicate who

has a packet to send to its terminal.

On subsequent polls of these terminals, the local

routine checks the originating PCB to see if the bit has

been reset. If it has not, no new packet will be received

(only one packet at a time). When polling the destination
I

PCB, the bit that was set is found and an attempt is made

to send the packet to the terminal. If successful, then

both previously set bits are reset. This is the signal to

the originator that the packet has been received. During

the polling process, the bit reset in the originating PCB

will be detected and the packet discarded. A check can

then be made of the terminal for another packet to be sent.

The method of broadcasting packets is similar to the

previous discussion on microcomputer-to-microcomputer

transfers. A broadcast packet is one in which the

destination field is FF hex. To effect a transfer to all .'.

terminals in the local connection, the local routine

traverses the loc con link and sets a bit in the PCB for -

each terminal as well as the appropriate bit in the PCB of

the originator. As previously described, each terminal will

51
'p .
p ,.'.°

-. _p....



receive the packet because the correct bit will be set in

their PCB entry. When all terminals have received the

packet, all bits in the originating PCB are reset.

The transfer of packets to the printer is somewhat

different in that only one byte is sent to the printer at a

time rather than a block of data. A pointer and counter is

maintained to keep track of where the next byte is in the

memory block and how-many bytes are left. The setting and

resetting of bits remain the same as above. An additional

mechanism is used to keep track of the number of characters

on a line so that a 'tab' code can be replaced by a series

of spaces.

The next discussion relates to the application program

running on the microcomputer. .A need was indicated for

transferring files between two or more microcomputers, as

well as for communication between users of the

microcomputers. An application program has been

implemented that carries out these functions. The

'networking environment' that is designed in the program is

menu driven. The main features include single stroke key

entries for commands. A help feature is incorporated

allowing the user to view available commands at any non-

text-input point by entering '?'. The following commands

are available:

52



1 All 10. Print
2. Bell 11. Quit
3. Change group 12. Send
4. Directory 13. Talk
5. Get 14. Verbose
6. Infotation 15. Who's there
7. List 16. <destination>
8. Mailbox 17. #
9. Netstat 18. ?

To send a message to a specific destination, the

corresponding terminal number must appear in front of the

screen prompt such as:

14>

The above prompt indicates that anything sent will be

sent to terminal number 14. The message could also go to

all terminals on the connection with a prompt like this:

all>

A message is sent by entering a 't'(talk) and typing

out the message. Up to 512 bytes can be sent in one

message. Typing more than 512 characters will cause the

transfer of the first 512 characters followed by another

message. All characters entered will be sent including

carriage returns, except cntl-Z, cntl-R, cntl-H, cntl-Q and

delete. Cntl-Z terminates input and sends the message.

When the message is received by the destination

microcomputer the the originator is identified by login

name and/or terminal number and the message is displayed on

the console. The output looks something like the following:

53

:4'4

4'i" -P



~T ~ - p ~ V F J '. . .1'. . . -.. - . -- '- u. -o . . . :':-:T-.- -'-' , .
'  

\* %.. . ...-

msg fr <name> Nr>
<text of message here>

-U-V
S... %*

While entering text of a message, all incomming messages .7

are held until the text entry is completed. To review the

contents of a message cntl-R is used. The only correction

capability is back space (cntl-H) or delete followed by

retyping the character. A message can be cancelled before

sending it by typing cntl-Q.

To 'send' a file to the destination, an 's' (send) is .

entered. A prompt is displayed asking for the file

name(s). Entering the file names is exactly the same as

entering text of a message. Up to 512 bytes can be

entered. A comma must be between the file names. An

example entry would be:

Send <filename> enter text, ^Z to send:
b:test.com,a:command.com,e: *. *

Once this entry is made it is parsed for each file

entry. A search is conducted to find the file(s) and to

send them one at a time. Since the packets have a checksum

value in the header, a receiving microcomputer can

determine if the packet arrived without error. If the

packet is not sent in a broadcast mode, the receiving

microcomputer will acknowledge receipt of the packet as

either good or bad. The packet is sent again if it was

received with errors. For broadcast packets no

54

• Am



acknowledgement is sent. If a broadcast packet arrives

with errors, then the file is closed and an appropriate

error message is presented on the screen. ,N

To 'get' file(s), the same method is used as sending

files except that the file names entered are sent to the

destination computer (no broadcast capability is allowed

nor desired) and the destination computer performs-the same

functions as the send command discussed previously.

To find out who is connected in the same group, (anyone

can connect to any established connection or anyone in the

listen state) a 'w' is entered for the command 'Who's

there'. A packet is broadcast to everyone in the group

asking for user's name. As the names are returned, they

are displayed on the screen.

To list all the lastest known active terminals, an 'I' -

is entered for the 'List' command. This list will include

any known terminals in the 'group' connection as well as v

any other previously active terminals. When the 'Who's ..

there' command is executed, all terminals are removed from

the linked chain of active terminals. The terminals that

respond to the 'Who's there' command are reconnected to the

linked chain. Any transactions with terminals not in the

active link chain cause the terminal to be added to the

chain.

The 'Bell' on/off command controls the computers bell

when incoming messages are received. With bell-ON, the

55

i* 4*. --- "C-C':

-~ -~~pU~ps ~ .,..-*.*.%..-:.*



bell will beep when a message arrives, for use when the

user is pre-occupied with other business and not looking at

the terminal screen.

The 'Directory' command will search the destination

computer for the specific files requested. Entry of file

names is the same as that for sending or getting files. A

maximum of 32 file names are returned in a single packet,

therefore, if many f-ile names are being sent, each packet

arriving will indicate the source of the packet and list at

most 32 file names. A search of all microcomputers in the

connection can be performed by asking for the directory of

'all' This will cause the directories of all connected
.J,.

computers to be displayed on the console.

The 'Netstat' command queries the concentrator for the

status of all the terminals in the network. This

information is displayed on the terminal. The 'netstat'

command also includes status of the ETHERNET connection,

such as number of frames (packets) transmitted, received,

etc. To turn off the ETHERNET information when getting

'netstat', use 'verbose-OFF'.

THE 'All' command changes the destination to broadcast

rather than a single terminal. The prompt will appear as

'all>'. Any transmissions to follow this prompt will be

sent to all users in the group.

To change the destination to any other terminal, simply

enter the terminal's number. To determine the number of a

56

VI7



• -

terminal, use the 'List', 'Netstat' or '#' command. The

'#' changes the destination terminal to the terminal

itself.

The 'Information' command gives helpful information

concerning each command available. The information

presented is contained in a file on disk. If the file is

not on disk the command will fail and an error message will

appear. If the fi'le does exist, the information is

presented at the user's pace, each segment is presented one

at a time following a space bar entry by the user. To

implement this feature, the file data is written to the

screen one character at a time until a 'tab' is

encountered. Once finding a 'tab', space bar continues the

screen output until the next 'tab' or end-of-file. The

'tab' is used for easy editing of the file with a typical

text editor. S.. .

To print out a file, the 'p' command is used and the

file name(s) are entered in the same format as a get or ... %

send command. The files requested are printed one at a

time with automatic form feeds and file names inserted

between file outputs. ".'.

To change a group connection a 'c' is entered which **.:

terminates the old connection and waits for a terminal '

number to be entered.

4. The 'Mailbox' command allows a user to keep a ,.

microcomputer connected to the network and accessible by

57
| .41

• , , ., . .- , .• -S, , .. .'.''.. '?l.i , i AL ,a?.'' [.'',"L ' A' '_ 7 ' ' '



other users indefinitely. When a local connection is

normally terminated, the concentrator will close the port.

If 'mailbox' has been set, however, the terminal will re-

* establish a 'listen' connection, allowing any other .
terminal to connect with it at its leisure.

To quit a networking session, a 'q' is entered. The .

application program asks to 'confirm' the input by entering

a carriage return.

The 'Verbose-ON' command allows a microcomputer to _

*perform screen output during file transfers and full use of

the 'netstat' command. No progress on file transfers will

be shown on the screen when 'Verbose' is OFF. When

* ~multiple file transfers are occurring at the same time from ~ .

* different computers, the information displayed may be

slightly confusing. The 'Verbose' feature will turn the

screen output off, alleviating the user confusion. A user

may also desire to turn off the Verbose feature when

another user starts a file transfer with the former's

terminal.

II-u



"j .Z.

VI. IMPLEMENTATION SUMMARY

A. THE HARDWARE CONFIGURATION

The hardware involved in this project was selected and p
procurement was arranged before the project began. As

depicted in Fiqure 1.1, the microcomputers that are the j

users of the networkare Zenith, model Z-100 microcomputers

with dual processor chips. The concentrator is a

combination of three types of VLSI boards. The hub of the

concentrator is an Intel 86-12A single board computer. It
. , 4i

is connected to the microcomputers via three National

Semiconductor model BLC 8548 I/O Expansion boards. Also

part of the concentrator is the Intel N13010 ETHERNET .

controller board. The concentrator is to be housed in an

Intel Micromainframe System 432/600 or similar MULTIBUS

frame which will serve as the communications medium between

the boards.

ETHERNET is a broadcast network communications medium. ".;"""

Implemented as coaxial cable, it is interfaced directly to

the ETHERNET controller at each node via an inductive

connection. ETHERQET operates at 10 megabits per second

(MBPS). The connection between the microcomputers and the

concentrator is a serial line using RS232 standards and

operating at 9600 BAUD. The pin connection of the cables

is shown in Figure 6.1. The effect produced by this

59 .

-49

-. *. .- .,. . - , , , . - . .- -. _ - . p " o ." -' .. ' ., . ' .. .. . .. ,_ _.. ._ . . .- . ._-_ _,. -" v v ." -" , ' . .' ' " ; ' . ;



*V. 7S. 1%. 177- T7 77- 77-771 . VN

connection is to allow symmetrical handshaking. The

handshaking protocol may be represented as a state

transition model. Figure 6.2 gives the corresponding state

diagram.

£%

peripherial gnd TxD RxD DTR DSR CHASIS
I .I I I I I : :>

A v A

I I I I I I"

gnd RxD TxD DSR DTR CHASIS
concentrator

Figure 6.1 Serial Port Cable Pin Connections

A prose description of the transitions follows:

If a site is clear, that is, DSR is low, and the
site has not set DTR since last sending CLR, then
either of two actions may occur:

1. The site may set DTR to indicate to the
other end that it has data to transmit. It must
then wait for the other end to signal itis ready
to receive before transmitting data. This will be
indicated by DSR going high.

2. DSR may go high indicating the other end
has data to transmit. To receive the data, the site

must set DTR to high. Once the data has been
transmitted, the sender must send CLR, which will
reset the receivers DSR and indicate that all data
has been sent. The receiver will then send CLR and ..

the sites will be back in the clear state.

o\. "4

60

r v*I I



. ,,. . . .

%L

*- - CLEAR -- *----"
s D r D*

* dIRcIR* ':'

* I I *"

* IDATA TO SEND I  IREQUEST RECD1
* I I I I*
* sID sIID *
* I S nI *
* c_ I R dIR *
* I I *
* IREADY TO SNDI IREADY TO RECI *

s* I d_ _ I ___ _."

* e I a rI *
* I t e I t *
* _ d I a c Ra_*___I

* I II * ..

* IDATA SENT IEDATA RECDI *

* sid I d *'--"

*s I c r I C*

*n I L e I  *
* -d I R c. I

* I I * .

* I Dc SENT I I C RECD j * .

Sq * I _____ __ _ __ -_ _ I

*r I C s IC *

- * eIL elL * -

*.__*de I R ___dR * L
* I R d I *
* i _ _ _ _ _ _ -_'_ _ I

* RIRCLEAR*
* I I * ;% .

Figure 6.2 Serial Connection Handshaking States

.% -

B. THE SOFTWARE CONFIGURATION
1. The Operating System

The single board computer driving the concentrator

will not operate under a commercial operating system.

61

..



TrFW -PJ -J -AA. ~ ~ Vr. W.~ . F. 7.; -Z 7 7~ V 17 V * ~ '' ?Y

% 4.

F. There will be no auxiliary storage to access and memory

will be managed by the network software.

The software for the Z-100 was written to

accommodate users under MSDOS version 2.11.

2. The Ada ProgrammingF LanguageI a. Why The Ada Language?

According to MacLennan (Ref. 5], "The Ada

language is the result of a Department of Defense

initiative to find a language suitable for embedded

computer applications that began in the mid 1960's.I.:; Specifications were written as a sequence of five documents

between 1975 and 1979 culminating in a competitive language V

design effort that produced the Ada programming language.

The Ada language was revised once and reached its final-

1.4 form in September 1980."1

Ve. Since the Ada language is very large and

complex, the first commercial compilers are only now

becoming operational. The Janus implementation is not

fully Ada language compatible in its implementation of

strings, ASM statements, or type byte and does not support

the Ada language standard exception handling or tasking

capabilities. Janus/Ada was selected for this project

largely due to its versatility in systems programming tasks

and due to the Ada languages destiny as the Department of

5'Defense standard language for embedded and systems

programming applications.

62

-4



b. Useful Features

The Ada language tool for iteration, 'LOOP', is

repeated from PASCAL, COBOL, FORTRAN, and others. The

ability to begin, end, and exit a 'LOOP', whenever desired

N provides the programmer the ability to create programs with

the same structure as the problem.

Another -extremely useful feature of the Ada

language is packages. Packages are program units that

contain data, procedures and/or functions. Data and

routines within packages are made accessible to a user by

providing to the requestor, a specification complete with

all the information necessary to use the data or routines

in the package. Since the specification is all that can be

seen by the requestor, details of implementation may be

withheld, supporting the principle of information hiding.

Packages also support separate compilation. ..

Unless specifications are changed, recompiling of a package

does not require recompiling packages referencing or being

S- referenced by the recompiled package.

Janus/Ada's resident assembly language and

- ~ assembly language interface also are very useful

characteristics. Routines that require high efficiency may ~.~

be coded in assembly language and called from high level

code. The ease with which assembly code may be used in

conjunction with high level Janus/Ada code facilitates

63

J.



creation of routines that emulate high level operators.

C. Problems

(1) JanusLZAa is a New LangRAS e. A major A

problem in implementing the project in Janus/Ada was the

lack of access to an instructor or programmer with

experience in Janus/Ada to assist in resolving problems and

questions. This problem will diminish rapidly as more

projects are conducted in the Ada language throughout DoD.

(2)Jan s\dais a Large Lang a22. Th

specification of the Ada language dictates the size of an

Ada language compiler. Many of the important features of

Janus/Ada are not possible without a large compiler. This

size does create software development problems relating to

long compute times and large storage requirements. The

speed of the compiler is comparatively slow, taking

approximately 90 seconds to compile a 100 line package. The

compiler is large, requiring disk storage for some 254K of

command and overlay files. The execution time of compiled

and linked modules is relatively slow and compiled modules

are also very large. When Janus is upgraded to a full Ada

language status these problems may even worsen.

C. SYSTEM PROGRAMMING FUNCTIONS ON THE CONCENTRATOR

The single board computer housed within the

concentrator is a communications processor for the Z-l00's.

9/ There is no auxiliary memory access required. The system

64

:e



-. 4 - .4. -V

functions of managing internal memory (RAM) and resource

sharing will be effected by the network software.

I. Resource Sharing

Requests to the concentrator for processing time 4.

will originate from twenty-five possible sources: The

microcomputers, printers, Gemini system, and the ETHERNET

interface. Each device is attached to one of the

concentrator's twenty four serial ports, and is polled for

requests to send and receive data. Also connected to the

concentrator, the ETHERNET controller board issues

interrupts across the MULTIBUS to trigger direct memory

access (DMA) transfer of packets destined for its ETHERNET V.V

address. These packets are linked to a queue for the

destination Z-100 and are sent when the Z-100 is polled.

2. Managing Memory 4'.

It is projected that the programs that wil l execute

in the concentrator will occupy approximately 50K bytes of

the 64K bytes of memory on board the SBC. The rest of the

memory will be declared as an array of memory blocks, each

of which is large enough to contain one 'datagram' with all

protocol headers and five hundred and twelve bytes of data.

As the size of the program increases or the memory is

expanded, the number of blocks declared may be modified by

changing the max mem blk constant in the package 'Globall'.

The blocks are used to hold incoming frames and to ...4.

build and hold outgoing frames. The blocks are allocated

6-.5

- . . . •.. .. 4......

".€- . .. ,".. -'-. ..'.-..'." .'. . . _ .'. "_.'. "-" . . .. . . . '_% *"._42 c



- p - - - * -°.7 -

and returned by routines that manage the blocks using a

memory management table and pointers to identify the next

available block. Though most blocks will be returned

* through normal processing, there is a 'garbage collector'

to return blocks left by abnormally terminated processes. -

D. THE SYSTEM DESIGN

1. The Structure of the Problem

The problem of implementing a concentrator based

NPS local area network may be decomposed into two halves:

a. Programming the concentrator.

b. Programming the Z-100 micro-computers.

These two separate computers perform many functions that

are clearly assignable to one or the other. For example,

routing messages to the correct Z-100 from the network and

communicating with the ETHERNET controller board are

definitely concentrator functions, while communicating with

the user is the responsibility of the Z-100. There are

many functions that could be performed by either computer.

The problem closely resembles the level structure

of most network implementations. The physical network

protocol level, network address resolution protocol,

INTERNET interface, site to site coordination, and user

interaction layers are encountered within this project.

Figure 6.3 is a graphic description of the layers addressed

66 **sS

•. p'.

S..'



USERs Z-100s
'.-.

APPLICATIONs Z-100s
",'%

LOCAL/TELNET/FTP Z-100s

PORTs CONCENTRATOR/Z-100 I

, LOCAL/TELNET/FTP CONCENTRATOR

.I TCP CONCENTRATOR .

lIP/ADDRESS RESOLUTIONI CONCENTRATOR I

IU I

I ETHERNET I CONCENTRATOR "

I I

Figure 6.3 System/Protocol Layers

in this implementation. Generally, the concentrator

handles the lower layers of protocol while the Z-100

performs functions nearer the user level.

Within the concentrator, the problem may again be
-U

decomposed into two halves. The concentrator must be able

to send messages onto ETHERNET and receive messages from

ETHERNET. These two halves are independant of each other

though they do handle the same protocols. Figure 6.4 is

i"UU the structure chart for the packages resident in the

," concentrator. The protocol layers are the more specific

description of the problem since each message sent out must

67
."6

.. i:



.0

must clear each layer 'upward.' i -

• POLLER ----- ----- ---- > LOCXFER* '"

V5

'4

I TCPSEND 1 < -------- I PCB REC *,I.&

• I IPSEND TCP REC *.
• 1< ----- ----- ---- I . . .

• asec rooo ae while rceived
4V

• I 1 I * "'-

• J ETHSEND .... >J IPREC * -

• NTRPT HDL ---------- *".

* I ^* "

• I I * ":<
* ~ ~ ~ ~ OVL ---PE----------PC_-C

* I** * _ _ _ _ _ _ _ I I _ _ _ _ _ __** *** ** *** ** **I** * , % .5.

Figure 6.4 Concentrator Package Structure Chart -'"

From the Z-100 level the problem is very specific: l~

'Match the protocol of the network application software on "--

the VAX UNIX.' In the case of local transfer, the problem

68 ";".

* V* '.

I
".,'*"",,'" . I E.T-."" H.-..',.SE -NDvI,.v . . >.1,'.v. .IP.REC.. ... ,'v .,',""I. .*,....'.;



was to create a protocol. The application software to be

matched are TELNET and File Transfer Protocol (FTP). "-

2. Principles

a. Remain standard

The primary source of information regarding the -"

network protocols was the Stanford Research Institute's

publication (Ref. 2]. This document contains a

specification of the INTERNET Protocol and Transmission

Control Protocol. Since there is no governing authority to

enforce meticulous adherence to the specification,

variations to the standard exist. Each of these variations

is a source of error and aggravation for the programmer who

is trying to match the non-standard system. In an attempt

to facilitate future maintenance programming for this

system, the documentation was followed as closely as

possible. Most design and implementation decisions that

the references addressed were made to follow the documented

standard. Only when allowances had to be made to match "*N

non-standard systems was the system intentionally allowed

to vary from the documentation. For this reason, the

programs were allowed to carry the standard names TELNET

and FTP. The local transfer program also follows the lead

set by the guidelines for TELNET and FTP.

b. Modularize

The scope of this project is in the range of a

small to medium sized software engineering project with

69

% "o -,4
"-.[ . .

U,, ,%,[,% " ,% , , " " " "
" " " "

" " % " " 
' " "

" " , - ' ,',- ' 
,

" "- ' "."2,.' -,-.-.." " '"-,' ' "; ''"



between five and ten thousand lines of code. This, coupled

with the nature of this project as a joint thesis, demanded

a thorough decomposition of the problem. The

modularization was attained based on the structure of the

system. Each protocol layer was handled independently of

the others and the modules were separated accordingly.

Libraries were created to store frequently used modules

such as handshaking routines, special adders, conversion

functions and others, and modules written in assembly

language were separated from high level Ada code. .

3. Methodology

a. Prototype

The starting point for the work done in this

thesis was the thesis by LtCol Reeke (Ref. 11, which

contains the code to trigger a remote login to the VAX

UNIX using the ETHERNET communication interface. The

sequence was accomplished by 'listening' to ETHERNET and

mimicking another station that had remote login

capabilities. The first goal of this project was to

complete the login sequence on that system. Reeke's

system, programmed in PL/I, provided many tools used to

effect the login. The program to 'listen' to ETHERNET was

invaluable and his research concerning the checksum and

other algorithms is implemented into the system. Many

problems were yet to be overcome in order to effect a

complete login. The problems of address resolution,

70 . --.
,.' * ,



.. '

retransmission of lost or mishandled packets, sharing of % %.

data between interrupting and interrupted processes, and

managing memory without the assistance of an operating

system were just some of the major hurdles to be overcome.

Though the prototype system did not resolve all

these problems, it did provide many answers and provide a

very good basis to design the final product of this thesis.

b. Top Down'

Figure 6.5 is the Level 0 diagram for the final

system. This diagram was designed on the basis of

Z-100 <--> Controller I I Operating I
I I I I System I

^ Management Data L_
To All

Common Memory AA

V V V".

/ \/ \/\,.-.,'
I I I I

Send I I Receive I I Local I
Protocol I I Protocol I I Protocol I

III -I"I" -

AVI

/ \/ \ ...-..

/Sink \ /Source

Figure 6.5 Level Zero Diagram

71

-2 2j'.



knowledge gained from the prototype and has survived the

project with minimal modification. The blocks representing

the highest level modules were decomposed into smaller

*functional modules. The decomposition continued in

hierarchical fashion until the lowest functional level was

attained. An attempt was made to minimize interface between

modules by specifying all input and output data as

parameters.

4. The Modules

a. Globall

One of the taboos in structured design is the *

use of common data or global data areas. This project

avoided these to a large degree. The package 'globall' is

an exception. Beyond the usual need for global types and

constants which are made visible at all scoping levels,

this problem required some other shared data. The ETHERNET

controller is an interrupt based processor that

communicates with the host computer it is supporting by

triggering interrupts over a MULTIBUS configuration. All

data addressed to the supported host is passed via this

interrupt process. The host computer continuously queries

or polls the ports and services requests including the

*transmission of packets onto ETHERNET. The polling

V process, considered the steady state process, and the

interrupt process must be able to access and modify the

transmission arnd port control tables. The necessary dual

72



.'~~)W'.~~ i . J . W. - - -_ TC W . 7 - F U -31 A7 -%. ~ . .d ~ P W~ W ~ *. ~ .-J'V -'X P. 7-' . .

access is effected using the global data area 'Globall'

where these two control block tables are declared.

b. Poller

Poller is the driver of the SBC in the

concentrator. It polls ports for service requests using

the port control block entries as reference. Only active

ports, which are identified in a linked list, are polled in

each cycle. Periodically, with the time period specified

by system maintenance personnel, inactive ports are checked

for requests. In addition to the remote login, remote file

transfer, and local file transfer requests, net status,

port number identification, and passive listen are valid

requests. Poller updates the state of each port as it

progresses from process to process to attain requested

service. I "

C. TELNET

Once a user has triggered a connection with -. '

a remote host, the only function of the concentrator is to

pass data between the user and the network. This is done

asynchronously. The port from the Z-100 is checked and if

data is ready, it is read, stored in memory, and the

transfer triggered. If there is data queued for the Z-100,

at most one packet is transmitted per cycle to the Z-1O0.

Checks are also performed to allow the user to terminate

the process.

73 ""

J r* .. '



The Z-100 acts as a 'dumb' terminal once the

process is begun. Each stroke of the keyboard is

transferred to the concentrator and data echoed from the

concentrator is displayed on the screen.

d. FTP .-.

FTP is very similar to the TELNET process at

the concentrator level. Data is simply passed between the

Z-100 and the host." One difference is that FTP utilizes

two network connections to effect data transfers. The

concentrator must manage both connections and coordinate

with the Z-100 to determine which line to use when.

The Z-100 is programmed to implement the file

transfer protocol layer. FTP operates as a series of

commands from the user (active requestor) and replies from

the server (inactive servicer) to coordinate transfer

parameters and trigger the transfer. Sequencing is

presumed and close coordination with the concentrator is

required. No provision has been made to allow a remote
.J4

host to initiate an FTP connection with a Z-100, hence, no b2.

server process is coded.

e. Local

For the requirements of local file transfer,

the concentrator acts as a packet switcher. A control

block for each port identifies which packets are to be sent -.

or received, and when the ports are active, the transfers

74

ii.-4... 4*4



.-

take place. Printing is also handled using this packet

switching mode.

The software on the Z-100 makes this local

transfer process a very powerful tool. Capabilities

include message passing, transfer of multiple files to

multiple users, passive listening to alwnetwork users

access to one library, network status query, and port

identification. Minimal foreknowledge is required by a

user of this system. In order to transfer files between

two computers on the net, both must be operating under the

local transfer software and the sender must know the port

features will prove very helpful to instructors and system

maintenance personnel as well as students and other system

users.*

f. TCP

The purpose of these modules is to perform the

telecommunication control protocol functions. These

functions include opening, closing, and maintaining

connections, monitoring and acknowledging packets to

prevent data loss, updating the telecommunications control

blocks, and interacting with the higher and lower layer

protocols. TCP also provides an address to allow

identification of separate users within a single network *

host.

75

Ile.



g. IP

The INTERNET Protocol is concerned with the

operation of the telecommunications network. The IP address

identifies a unique node on the net. On ETHERNET, this

address is resolved to select the controller board which

will read the packet.

h. ETHERNET *

At the physical layer, the protocols are

handled by the controller board that must be used to access

ETHERNET. The purpose of the software in these modules is

to communicate with the controller board to coordinate and

0 effect data transfers to and from the ETHERNET.

i. Library

Network transfer of data requires preservation

of all eight bits of each data byte. This precludes

representing the bytes as type 'character' and the type

integer does not lend itself well to the necessary

individual byte manipulation. Many fields within the

protocol header are represented as arrays of bytes which

require mathematical computation to be performed on them.

Special routines to add two and four byte arrays were

written and reside in the library package. The library

package also contains the routines that provide memory

management functions for the single board computer.

- ~~76 , -



% %

.4. .q .

VII. CONCLUSIONS

This thesis is mainly an implementation of the TELNET,

FTP and Local transfer processes on the NPS LAN. The

research objectives of coding in Janus/Ada, navigating the .-

protocols to allow remote login to the VAX UNIX system over

ETHERNET, implementing protocol requirements of FTP,

allowing single or multiple local transfers, and sharing of

local resources were satisfactorily completed as evidenced

by the systems in operation. The network communications

systems created in the course of this thesis enhance the -

NPS AEGIS laboratory systems development in several areas. % %"%

First, it is a demonstration of the ability of Janus/Ada to

effectively perform complex operating system and embedded

type functions. Second, it allows creation and integration

of program code for the NPS AEGIS laboratory system on

microcomputers. Third, it gained direct access to DDN,

MILNET, and ARPANET from within the development system

itself. Finally, it demonstrated the viability of

clustering processors to share expensive resources and

otherwise enhance data communication and transfer.

1W1~

4.

77
• "O-o. ".. .



'.Jo

APPENDIX A

PROGRAMMING NOTES

A. INTRODUCTION

The objective of this appendix is to provide IZl
programmers maintaining the system with information that
will be helpful in modifying or adding to this system. The
largest and most complicated portion of this system is the
process that exectes in the concentrator, the LAN
controller program. The major areas of the system to be
discussed are program compilation and loading, theconcentrator program, interface to the concentrator,

TELNET program, the FTP program, and the local connection
program.

A good source of information about the concentrator
from the standpoint of overall design for TCP/IP protocols,
and a 'must' reading for anyone doing maintenance on the
program, is the SRI INTERNET Protocol Transition Workbook,
reference 2 of the thesis.

B. PROGRAM COMPILATION AND LOADING

Under Janus/Ada, the compilation order of packages and
specifications is critical to system operation. Included
with program listing in the thesis is a listing of the .sub
files used to compile the programs. Linking using 'Jlink'
will produce an executable .com file for FTP, TELNET, and
Local programs executing on the Z-100(under MS-DOS).
Loading the concentrator is slightly more complex.

Loading the concentrator program is effected by a I.

program named 'Boot.com'. Boot should be resident on the
boot drive of each Z-100 and should execute each time each
Z-100 is turned on. The Read Only Memory (ROM) of the
86/12 A has been configured to handshake with the boot
program. If the concentrator is not executing the control
program and is in the 'reset' mode, boot will transfer the
control program to the concentrator. If the control
program in the concentrator is executing or the
concentrator is turned off, handshaking will preclude a
boot attempt.

The control program loaded by 'Boot.com' contains the
executable code created by linking the .jrl files from all

78



concentrator packages. When reprogramming a particular i.,-

package, if the specification is not changed, then only the
changed package need be compiled. If one or more package
specifications is changed, the compilation should be
accomplished using the sub file provided with the
concentrator software. To produce the controller program,
compile concentrator programs (under CPM-86) as necessary,
then use Jlink on the package 'Poller'. This will create
the file 'Poller.cmd'. Rename 'Poller.cmd' to
Control.prg' and, convert the CPM-86 .cmd file into MS-DOS
format using the program 'Rdcpm', and place the file on the
boot disk of each machine(under MS-DOS) along with'Boot.com' . ...

C. CONCENTRATOR PROGRAM

The general function of the concentrator can be thought
of as passing packets of information from one port to
another. Along with the process of passing packets it must
maintain the status of the connections as well as managing
memory. The concentrator does not contain an operating
system, therefore the customary functions that are normally
handled by the operating system had to be avoided. Before
going into detail about the individual procedures in each .
packet, you will benefit by a general one on the overall
program.

The concetrator begins execution by initializing the
data structures to appropriate values, setting appropriate.. .
initialization of the UARTS, activates the N13010 ETHERNET
controller board and obtains the EHTERNET physical address
from the ETHERNET controller board. .'

Understanding the data structure is important to
knowing the details of the system. Starting with the
terminal ports are the Port Control Blocks (PCB) for
maintaining the status of the connections with the
terminals. The PCB structure is:

TYPE pcb rec IS RECORD

isprint : BOOLEAN;
dataprt : INTEGER;
statprt : INTEGER;
cmdprt : INTEGER;
prtQ : INTEGER;
s_prtq : integer;
sent : BOOLEAN;
Pstate : Pstates;
time wait : INTEGER;
act : BOOLEAN;

79
,' ',. .

I ' .- .......



1prt ad : array2;
s prt ad : array2;
sec act : BOOLEAN;
loc-con : INTEGER;
buf in : socket rec;
buf-in cnt : INTEGER;
pcbptr : INTEGER;
snd : flg array;
ack : flg array;
flg_byt : INTEGER;
flg bit : INTEGER;

The PCB state is used to determine which process to
call to handle transactions going to and from the port.
The close state is just that, the terminal connected to the
port is inactive as far as the concentrator is concerned.
The terminal may very well be executing an application .-. '.

program that does not require the use of the concentrator.
When the users desire to do some networking, they must
execute one of the programs to interact with the
concentrator. The interaction begins by the terminal

-sending a control code down to the concentrator specifying
what the users desires is. The concentrator reacts by
sending the same control code back and changes the state of
the PCB. Normally one state leads to another, for
instance, when a TELNET process is initiated by the-S1
terminal, the PCB state goes from close to r init. The
next information expected from the terminal is the address
of the destination host. Once the address is received the
connection is attempted by the concentrator.

When the foreign host connects with the concentrator,
the state of the PCB is changed from r init to rlogn. The
following is a summary of the state transitions:

+---(rceiveclosed
+---(receive rlogn)---+l I+--(receive loc)--++---------+ +--+

(receive ftp) I
r init f init (receive lstn) 1 init

* I l--(unable)---+ I
(estab) (estab) lstn (estab)

rlogn ftp (estab)----+ 1
+---- +-------- I I

(disconnect) local
loing +- (disconnect) +closingi :

+--(PCB cleared)----
closed

80

,;:.9

il -4



.°

These are the fields in the PCB:

Isprint - A boolean that initializes that PCB to state lstn
if the boolean is true.

Data_prt and statprt - Contains the port address of the
data and status registers on the respective UART.

PrtQ and s prtQ - Indexes to memory blocks in the particular
queue. The prtQ is the primary queue and s_prtQ is
the secondary queue. During TELNET communications
only the prtQ is used. During FTP commnications
both queues are used. During local connections the
s_prtQ is used to queue a memory block and the prtQ
is used to count the characters between tabs for
printing purposes. For a more thorough discussion
of how the queues are implemented see the discussion
on the memory management table.

Sent - A boolean used to remember is if a packet was sent
or not. It is also used as a flag in local
connections.

Timewait - is a loop counter for timing out a connection
once a certain state is reached.

Act - A Boolean used to specify either an active or passive
connection (see the TCP/IP handbook for details).

L-prt_ad and sprtad - Field to store the TCP addresses are
stored in the PCB. These are used to make the
connection between the PCB and TCB. More than one

Z TCB can be associated with one PCB.
sec act - A boolean to indicate if a second connection is

made to the same port. Used only in FTP when a
primary connection is made and then a secondary
connection for passing file data.

loc con - Used as a pointer to link PCBs in the same 'group'
(see ch 5 of [HART/YAS86] for group discussion) so
that local broadcast packets are easily sent to all
members of the group.

dst ad - A record containing an IP address and a TCP address
of a destination host.

dst ad rcv - A boolean to know if the destination address
has been received or not.

pcbptr - A pointer to link all the active PCBs together to
speed the polling processs. The inactive ports are
polled once out of a value equal to 'loopstopoll'
(recommended: 1000).

snd - An array of flag bits that every terminal marks to
indicate that a packet is ready at the respective
bit position terminal. For example, bit 7 is set

4. when terminal 7 has a packet to send that particular
terminal. The packet is stored at the originator's
s_prtQ. These flags are used only during local
connections.

81

81 81

4% . . . o . - . .. . . ..-.,-. -.

.. . . . . . . . . . .......... ........ ,.. .. . ,.



ack - An array of flag bits exactly like 'snd' above, only
these bits keep track of all terminals that need to
acknowledge receipt of a packet stored at that PCB.

When communications occur between a terminal and one of
the hosts on the ETHERNET, the TCP/IP protocol is used to
pass packets. TELNET, FTP and local all use the PCBs to
maintain status of each port. TELNET and FTP use the TCP
layer (see ch 2 of the thesis) to maintain status of the
connection across ETHERNET. To store the state of
communication a Transmission Control Block is used (see the .'•-,'

TCP/IP handbook for details). The following fields are
stored in the TCB:

prt_num - An integer index for the associated PCB number.
This is the means of relating a TCB to a PCB when a
packet is received. This field is set to 99 when no
connection exits.

Tstate - Maintains the state of the particular connection,
if there is one (see the TCP/IP handbook for
details) .'."

loc_sock - A record containing the local TCP and IP
addresses of a connection.

rem sock - A record containing the remote TCP and IP

addresses of a connection.
snd - A record containing the necessary information about

proper sequencing of packets over the ETHERNET.
rcv - A record similar to 'snd' above (see the TCP/IP

handbook for details on both snd and rcv).
retrnsQ - An integer containing a memory block for the

beginning of the retransmission queue. If a packet
is not ackowledged by the receiving host after a
number of times around the polling process, it is
considered timed out and is retransmitted again.

Address resolution is a means of finding the physical
ETHERNET address of a foreign host. Once the address is
found it is placed in a table along with its IP address.
The table also contains a value to identify how recent an
address is should the table becomes full and one of the
addresses is removed to allow room for another. There is
more on address resolution in RFC826.

Ethpck - This is a memory block much like the TCP/IP
memory blocks only the fields are different. Two
independent implementations cause a particular problem in
handling address resolution packets. (1) All the memory
blocks are identical; (2) Any packet received is put in any
one of the standard memory blocks. The Ada language does
not have overlay capability because of its strong typing.
To allow a memory block to be transformed into another type
an assembly language routine is called (convert block) that

82 •

-Ir

• •" "" - " - "- "-.'-..". ., _ ' ' "_ _o "- ". , " " , " ", - " ", :- , ,',. , ,. .%L. , -' .' _%,.% .,,.,-',.' .u _,_ ._ .. , . ,.-,-; %-



does nothing but jump to a highievel routine that expects a
different type memory block. Once this is done all the
fields in the memory block can be addressed normally. The
following is a comparision of the two kinds of memory
blocks:

*TCP/IP ETHPCK
----------------------- +----------------------

ETHERNET I I ETHERNETI
HEADER I I HEADERI

+---------------------- -----------------------
Iver I serv I j ar hrd(1) lar hrd(2) I

----------------------- +---------------------

I len(l) I len(2) I j ar-pro (l) 1jar pro (2) 1
----------------------- +----------------------
I id(l) I id(2) I jar len(l)Iar len(2)1
----------------------- +---------+-------------
I flag(l) I flag(2) I I null I ar op I
----------------------- ------- +-------------+

I ttl I prot I lfmETH(l)jfm,_ETH(2)1
+---------------------- -----------------------
lip cksumlip_cksum2l Ifm ETH(3)jfmETH(4)1
----------------------- +---------+-----------
lip scr(l) lip scr(2)j Ifm_ETH(5)JfmETH(6)j
----------------------- ---------------------

jip_scr(3)jipscr(4)j jfmIP(1) IfmIP(2)
----------------------- --- --------------------
lip_dst(l) lip dst(2)J jfmIP(3) JfmIP(4) I
----------------------- ---------------------
lip_dst(3) lip_dst(4)I Ito_ETH(l) ItoETH(2)1
----------------------- +---------+------ -------
I scr(1) I scr(2) I ItoETH(3) Ito_ETH(4)j
----------------------- ---------------------
I dst(l) I dst(2) I ItoETH(5)ItoETH(6)I
------- -- --- -- -- -- -- -- -- - -- -- -- -- --- -- -- -- -- -
I seq(l) I seq(2) I ItoIP(l) ItoIP(2) I
----------------------- +----------------------

Iseq(3) I seq(4) I Ito_IP(3) Ito_IP(4)I
----------------------- +----------------------

The memory management table (MMT) enables full
management of memory by use of pointers. The memory blocks
are all equal in size (576 bytes). The MMT is an array of
integers which-is indexed by integers. The indexes
correspond to the indexes of the memory blocks. For
example, memory block number 7 would be index number 7 in
the MMT. The integers stored in the MMT are pointers
(indexes) to the next memory block in succession. If, for
instance, a queue is used to store a number of packets, the

83



first memory block in the queue would be the first packet.
The second memory block (or packet) could be found by
checking the MMT with the index of the first one to get the
second. The following is the way the MMT is initialized
during boot-up:

freeblk----> 1 - 2....

2 23
2 3 I

----------

,

Nj 0 I . ,

Free blk is a pointer to the next available memory
block. When the first memory block is used the free blk
pointer is moved to the ne,:t one as indicated in the MMT.

Appendix B will focus on individual procedures and how
they function. The discussion will follow packet by packet
and cover each procedure in each packet. The following is
an outline of all the packets and what procedures are in
each:

I. Poller. .,?
A. Poll.

B. Rem init.
. O 

.  
. .,-

C . Rlog.
D. Ftp.
E. Initialize .-.

II. Locxfer.
A. Locinit
B. Loc.

III. TCPsend
A. TCPopen
B. TCPsend
C. TCP close
D. CheckretrnsQ

IV. IPsend
A. IP send

84
I...:...

S....:...... ... ... I-



% V.

V. ETHsend
A. ETH-send 

N

VI. RCV

A. Ethpckhd

VII. ETHrec

VIII. IPrec
A. IP rcv

IX. TCPrec
A. TCP rcv
B. pcb -clsing"~-
C. Cony bik snd
D . Send-ack7
E. Update retrns

X. PCBrec . ,

A. PCB rcv
B. AdvPCB state

XI. Convblk
A. Cony bik *

XII. Ntrpthd a
A. Assyntrpt hd.
B. Initntrpt

V~

XIII. Lib
A. Get-Memory
B. Give -memory
C . Perf-cmd
D. Tm _pck
E. Resolve ad
F. GetTCB ndx
G. PCB-cis-
F. PCB~abort
H. T CB-cls
I. Ac tivatepr

NJ. Giv e status

v XIV. Assylib
A. Cksum
B. Wr ad
C C. Outprt
D . Arr to int
E. Ohi
F . Olo
G . Inprt

H. Otstbit

85



Sv -V ?I 1(!- -.1 F- i- Is. A-L, .. .1 I . - b

I. Oclrbit
J. Osetbit
K. Gt equ
L. Ltequ
M. Incarr
N. Grtr of
0. Uppernibble 4
P. Incnxtprtad
Q. Prthex Q
R. Send trns
S. Get trns
T. Oput

. U. Onew line
V. Xsum

XV. FTP
A. FTP

XVI. TELNET If'A. TELNET.>

XVII • LOCAL
A. Handle kybk input
B. Handle incoming_packet
C. Established

XVIII. ASMLIB .
A. Byte to char
B. Byte to chr %.. *':

C. Prntdata
D. Getch
E. Delete file
F. Create-file
G. Open file
H. Write file
I. Close file
J. CKsum
K. Setdma.
L. NO_echo
M. Search frst
N. Search-nxt
0. Get trns
P. Send trns ..
Q. Read file
R. Capital
S. Lower case
T. Arr to strg
U. Conv byt
V. Two bytes
W. Current dsk
X. Getstrg
Y. Prntbuf

86

8! a t.~L .A..2.d..... .. S . a* .. i t t 6 .,"v't t



.". LA. "

'XIX. LIB(Z-100)

A. Send cmd,
B. Send-data
C. Get data
D. User options
E. Get dataline
F. Processreply

XX. FUNCS
A. Getopt
B. Get password
C. Get username
D. Get-portnum
E. Get filename
F. Get-parameter

XXI. GETIP
A. GET ADDR

XXII. LIBRARY
A. Activate
B. Deactivate
C. Get _memory
D. Arr to int
E. Give memory • ..
F. Put in trnsQ
G. Inc arr
H. Prompt*
I. Add toQ

XXIII. FILEXFER
A. Send file
B. Create FCB
C. Receive file
D. Close FCB .'.

E. Send dir
F. Information

" 87""

NIP%

.," * -_!

". " % "o

Si-_



97771T

APPENDIX B

PROGRAM MAINTENANCE MANUAL

A. PACKAGE poller
1. CONFIGURATION

a. Language - Janus/Ada
b. Compiler version - 1.47
c. Linker version - 1.47
d. Target hardware - Intel 86/12A SBC
e. Operating system - CP/M-86
f. Package description:

Poller - The poller package consists of the
initialization sequences of the entire program and polling
routines that poll each terminal for transfer of data or
execution of commands. Poller begins by setting up the
data structures and initializing the hardware such as the
N13010 ETHERNET controller board and the terminal UARTS.
There are 4 port addresses for the RS232 ports, each
consecutive port are addressed next to the previous,
however, a second set of port addresses, for interrupt use,
are addressed after the first. See table 2.4 of
[HARTMAN/YASINSAC 86] for port addresses on each board.

A total of 64 address locations are used for each RS232
controller board. In order to accommodate all the port
addresses of the three RS232 boards as well as the
iSBC86/12 and N13010 boards 16 bit addresses had to be-.-... -
used. The RS232 port addresses range from 0000 hex to 01BF
hex. The iSBC86/12 uses port address 00C0 hex to 00FF. The
N13010 board uses port address OOBO hex to OOBF hex.

Port Address Table (in Hex)

0000-OOAF not used

OOBO-OOBF N13010 ETHERNET controller board

OOCO-OOFF iSBC86/12 CPU board

0100-013F RS232 board # 1

0140-017F I RS232 board # 2

0180-01BF RS232 board # 3

01CO-FFFF not used -

88



77'

Package Poller initializes all the PCBs to either a
printer or terminal by setting the boolean isprint to true
or false respectively. When the N13010 ETHERNET controller
board is initialized it is commanded to perform command
'receive status'. From the 'receive status' command the
physical address of the controller board is obtained,
enabling changing of this board without affecting operation
of the system (ensure system is turned off before changing
board). See the manufacture's manual for more information
on the N13010 board. The ETHERNET board is set to receive
packets over the ETHERNET. Only packets that are addressed
to the physical address of the ETHERNET board or
'broadcast' packets are captured for processing even though
the board has capabilities of capturing other packets.

2. SUBROUTINES
a. Poll

(1) Type - Procedure.
(2) Purpose - Poll all serial ports and call

appropriate processes to handle the particular state of
each port. {. -

(3) Description of parameters - no parameters.
(4) External references:

(a) Get tcb ndx
(b) Tcb-cls
(c) Tcp close
(d) Give memory
(e) Send trns
(f) Inprt
(g) Outprt
(h) Otstbit
(i) Rem init el
(j) Rlog
(k) Ftp
(1) Loc init
(m) Loc
(n) Check retrnsq
(o) Give status

(5) Process description:
The polling routine is an infinite loop that is divided

into two phases. In the first phase only the ports that
are active are polled. An active port is one whose state
is anything other than 'closed' or 'listen'. These
particular ports are selected by a linked chain of ports
beginning at the 'head' PCB. When a port becomes active it
is inserted into the linked chain and when inactive it is fr
removed. The polling process simply follows the linked "
chain until it returns to the 'head' PCB. The state of the
PCB is the important field for the poller. The state
determines what process to call on (if any) to handle the
connection. The only state that does not require calling
another procedure is the closing state, when all data is

89

4 ,o



being flushed out of the queues, which, once done, the

state is returned to closed.

The second phase of the polling process happens once
'loopstopoll' (constant 1000). During this phase all the

closed or listening ports are checked for any control codes
for which to change states. A garbage collection routine
is also included in this phase.

b. Rem init
(1) Type - Procedure.
(2) Purpose - To obtain the foreign address

0.: from the particular terminal passed as a parameter. Once
the address is obtained, the three-way handshake is
initiated.

(3)_- Description of parameters -
(a) prtnum - port number.
(b) rem tcp addr - the two byte TCP

address of the remote socket.
(4) External references

(a) Inprt
(b) Otstbit
(c) Outprt
(d) Tcp open
(e) Get tcb ndx
(f) Pcbcls

(5) Process description:
TO establish a connection with a foreign host a

*" sequence called the 'three way handshake' is initiated.
The rem init procedure is used for the handshake which is
used in TELNET and FTP connections. When a terminal
commands a TELNET or FTP process, then subsequent polls of
that port calls rem init to get the foreign INTERNET
Protocol (IP) address from the port. The address is a 4
byte address which is concatenated with a 2 byte TCP
address of the well-known socket. For TELNET the well-
known TCP socket is 0017 hex and for FTP it is 0015 hex.
The well-known TCP socket is passed in as a parameter to
rem init. The address it depends on whether a TELNET
process or FTP process is desired. Once reminit has the
entire socket (TCP/IP address) it calls TCP_open with the
socket. The sent parameter returns whether the packet was
actually sent or not (if the physical address of the
foreign host is not known then the packet is not sent and
an 'address resolution' packet is sent instead. Rem init
will attempt again after a timewait period, or close out
the port if no reply is received from the foreign host.
The state of the connection (PCB state) will be change by
receipt of a packet from the foreign host. The state is .N-
changed in procedure 'advPCBstate'.

90



C. Rlog
(1) Type - Procedure.
(2) Purpose - To process and send data from .-

the terminals to a remote host. Any control codes sent by
the terminal is also processed. .ON

(3) Description of parameters -
(a) prt num - port number.

(4) External references:
(a) Inprt 16
(b) Otstbit
(c) Outprt
(d) Tcpclose
(e) Get tcb ndx
(f) Pcb-cls
(g) Tcb-cls
(h) Tcpsend
(i) Get trns
(j) Givememory
(k) Getmemory
(1) Send trns

(5) Process description:

The TELNET process was formally called 'remote login'
or rlog, hence the name rlog. When the three way handshake
is complete for a TEL14ET process, subsequent polls of the
PCB will call 'rlog'. Rlog does three types of checks, (1)
checks for a control code from the terminal (2) checks for
data from the terminal and (3) checks for data to the
terminal. A control code will be found by checking the
status port for 'receive ready'. To determine if the .--

terminal is trying to send something, the status port is
checked for Data Set Ready (DSR). If data is to be sent to
the terminal then the prtQ field will contain a value other
than zero (the value being what memory block is held in the
queue).

d. FTP.
(1) Type - Procedure.
(2) Purpose - To process all data and control 4.

codes to and from the terminals in an FTP connection.
(3) Description of parameters -

(a) prt_num - port number.
(4) External references: .*%.*

(a) Inprt .I, ,
(b) Otstbit
(c) Outprt
(d) Tcpclose
(e) Send trns
(f) Pcb_ abort
(g) Tcp open
(h) Tcpsend .< ,
(i) Get trns

91 4" Z



(j) Givememory
(k) Getmemory ,.

(5) Process description:
The FTP process is a bit more complicated than the

TELNET process since two connections must be handled at the
same time. One connection is used to control the FTP
process between the hosts and the second connection is used
to pass the data. To implement a dual connection to a
single port we use a boolean value.(sec_act) to designate
single or dual connections. If a dual connection exists
then no data is passed to the terminal over the control
connection until the data connection is terminated. The
basic checks as in rlog are also made (1) check for control
code (2) check for data from port (3) check for data to
port. To determine if data from the terminal is for the
control or data connection a one byte" header is used which
designates either control, data, or other.

e. Initialize mem.
(1) Type - Procedure.
(2) Purpose - To initialize certain portions

of memory at the beginning of execution and during periods
when no terminals are active.

(3) Description of parameters - none.
(4) External references: NA.
(5) Process description:

To set up the data structures at the beginning of
execution and also as a housekeeping function during
periods when no terminals are active, the initialize mem -
routine is used to reset everything back to an inactive
state, ensuring all memory blocks and TCBs are available
for use.

B. PACKAGE locxfer.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CP/M-86.
f. Package description:

Package Locxfer handles all terminals in the states of
1 init (local initial) and local. Local connections can be
from any terminal in the 'local' state to any in the
'local' or 'istn' state. 'Group' connections are
simultaneously maintained, but the use of a group
connection is solely for broadcast packets. For instance,
if you want to send a message from terminal 5 to terminal
12 then you can do so if 5 is in the 'local' state and 12
is in either 'local' or 'istn'. If, however, you want to

92

,S.



send the same message to terminals 12, 13, 14 and 15, -
without repeating yourself, then the terminals 5, 12, 13,
14, and 15 must be in a 'group' connection. What
designates a 'group' are the links that connect PCBs
together using the loc con field in the PCB. Every PCB
that is in a 'local' state has a link to another PCB. The
links are set up by the port number that is passed down
from the terminal designating what terminal to link to.
The queues for local connections, unlike TELNET and FTP,
are maintained in the terminal themselves. The terminal
sending packets out may have several in its transmission
queue. Only one packet at a time resides in a PCB for
tranfer to another terminal. Another difference with local
transfers and TELNET or FTP is that packets are stored at
the originator's PCB-and not at the destination PCB. .'.

2. SUBROUTINES.
a. loc init.

(1) Type - Procedure.
(2) Purpose - To obtain the destination port

number for connecting two ports together. k'.
(3) Description of parameters -

(a) prt - port number.
(4) External references:

(a) Inprt
(b) Otstbit
(c) Activate prt
(d) Outprt 4
(e) Pcb cls

(5) Process description:
When a terminal initiates a local connection it first

sends the control code 'code loc'. The polling routine
responds by sending back 'code loc' and sets the state to " ..
'1 init'. In locinit the desired destination is expected
from the terminal. That destination is sent to the
concentrator like a control code. When loc init receives
the number (one byte) it error checks it, then reacts
according to the state of the destination PCB:

lstn - switches both PCBs to local state and forms a
'group', outputs null to both.

local - changes the single PCB to local state and inserts
it into the 'group', outputs null.

1 init - changes the single PCB to lstn, outputs null.
others - changes the single PCB to lstn.

The null is a byte of all zeros to trigger the
terminals into another phase of their execution. The null
byte was chosen so a printer terminal would not print a
character when receiving it.

9

9 3 %."2"

, ° .-4



7 ~~~ V %717'.%7.. - *...7777- 7

a. b. loc.
(1) Type - Procedure.
(2) Purpose - To get and send data packetsto

and from ports which are in local connections. Local
connections are established as well as the handling of
control codes.

(3) Description of parameters: 'Prt' is the
port number.

(4) External references:
(a) Inprt
(b) Otstbit
(C) Give memory
(d) Pcb cls

.(e) Give status
(f) Outprt
(g) Getmemory
(h) Get trns
(i) Send trns
(j) Osetbit", (k) Oclrbit #.

(5) Process description:
During local transfers three conditions are checked on

each poll of the terminal (1) control codes sent from the
terminal (2) any packet to be cleared from the PCB and (3)
any packets being sent to the terminal. Number 1 is
handled similar to every other routine handling control
codes, a case statement for all the options. Numbers 2 and
3 are handled very similarly by use of a single bit for
each terminal. Two fields in each PCB are used to track
whether any packets are ready to be sent to the terminal
and if a packet from the terminal has been sent to all the

a.appropriate destinations. In brief, this is what happens:
when a packet comes down from a terminal it is stored in
the s_prtQ, but only one packet at a time can be stored
there unlike the FTP process. The first byte of the packet
indicates its destination. The bit corresponding to that
destination is set in the ack field. The bit corresponding

* to the source is set in the snd field of the destination
PCB. Therefore, the destination will know it has a packet
to send its respective terminal by the bit in its PCB and
the sender will know when the packet has reached its .

destination by the same bit being reset in its own PCB.
This method works for one destination or many destinations. .-
In the case of a broadcast packet, the bits in each PCB
that is in the link or 'group' is set similarly. The two
bits mentioned are set for transmission of a packet, those
same two bits are reset by the receiving PCB once the
transmission takes place.
Example bit arrangement for transmission from terminal 11 to
terminal 5:

.a." ' " "" ' " . " " - ""4



0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 ... [

Ack 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ... I sender's PCB °1

0 12 3 4 5 6 7 8 9 0 12 3 4 ...

+-----------------------------------------

Snd 10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 ... I receiver's PCB
+-----------------------------------------

C. PACKAGE TCPsend.

1. CONFIGURATION.

a. Language-- Janus/Ada.
b. Compiler version - 1.47.
C. Linker version -1.47.
d. Target hardware Intel 86/12A SBC.
e. Operating system CP/M-86.
f. Package description:

" Package TCPsend implements the TCP protocol (see the
TCP/IP handbook for details) for the sending of packets to
foreign hosts. A TCP connection consists of three phases
(1) handshaking to establish a connection, (2) established
and (3) closing out a connection. Associated with the
three phases are several states as described in the TCP/IP
handbook. The data sending portion of the three phases are
handled by the following three procedures:

2. SUBROUTINES.
a. TCP open.

(1) Type - Procedure.
(2) Purpose - To prepare the TCP protocol of a

'syn' packet to a foreign host as part of the three-way
handshake.

(3) Description of parameters -
(a) prt - port number.
(b) foreignsock - the IP and TCP

addresses in a record structure.
(c) act - a boolean to set an active or

passive connection.
(d) loc_tcp ad - the local TCP used in

the connection is output to the calling routine.
(e) sent - a boolean to signal whether

lower level processes sent the packet, ie. ETHERNET address
of the foreign host is known.

(4) External references -

(a) incnxtprtad.
(b) getTCB ndx.
(c) get-memory.
(d) cksum.
(e) ip send.

95

- . ... . .../ . ,-. .. .;-;. ... ;, ;.b . ,- ,-.,- .ft,., .'. ' . '. .-..-.,.,. f.-. -. . . 5 ;. .



AO-Ri?3 595 JANU/ADA IMPLEMENTATION OF A STAR CLUSTER NETNORK 2/
PERSONAL COMPUTERS .. (U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA R L HARTMAN ET AL. JUN 86

UNCLASSIFIED F/O 1?/2NL

mhhmmmhhhhhhu
Ehhhhmhhommmm
mhhhhhhhhhhmhu
mhhmomohhhhhhh



-L ' 1JN.J"%2

IL L6L

kk

.4Z

11111 ii 1'112.0

uIIII Elll *32l

MICROCOPY RESOLUTION TEST CHART
NAT ONAL B3URIAU Of SIANDARiD, 196.liii.flm



L% Is 1-

(f) give-memory.
(g) inc arr.

(5) Process description:
When a connection is requested from a higher level

protocol (TELNET or FTP) a 'SYN' (synchronize) packet must
be sent to start the handshake process. The 'syn' is a bit
set in the control field of the protocol. A local TCP
address is obtained to use for the connection and stored in
the TCB (transmission control block). The local TCP
address must not be any of the reserved addresses,
therefore, addressing begins at 0400 hex. Each subsequent
connection will be incremented from the previous until FFFF
hex at which time the address starts over at 0400 hex. A
TCB table is created and initialized appropriately. If the
connection is active then a memory block is obtained and
the TCP portion of the block is completed. The block is
sent to 'IP send'. An active connection is when the
foreign host is known and the connection must be initiated
locally. A passive connection is one which waits for the
other host to initiate the handshake. In either case, a
TCB must be created. Even though no data from the user is
sent with this procedure, the 'syn' bit is considered data.

b. TCP send.
(17 Type - Procedure.
(2) Purpose - To prepare the TCP protocol of

data packet to be sent to a foreign host.
(3) Description of parameters -

(a) indx - a memory block index.
(b) data len - amount of data sending.
(c) tcpad - Iocal TCP addressused to

locat the TCB.
(d) sent - a boolean to signal whether

lower level processes sent the packet, ie. ETHERNET address
of the foreign host is known.

(4) External references -
(a) getTCB ndx.
(b) inc arr.
(c) cksum.
(d) ipsend.

(5) Process description:
When a connection is established then all data that is

o- sent to the foreign host is sent by TCP send. Appropriate
information is obtained from the TCB to complete the TCP
portion of the packet to be sent. Once the packet is sent
the TCB is updated to reflect current status. The packet
is then placed in the retransmission queue. For a good e.X
explanation of the necessary protocol see the TCP/IP
handbook.

96

.4 .-. -. - . \%- -- -. % . -. •.. . ~ ~ .. - . 0-.



c. TCP close.
(1) Type - Procedure.
(2) Purpose - To prepare the TCP protocol of

a 'fin' packet to be sent to a foreign host.
(3)Description of parameters -

(a) tcp ad - local TCP address used to
locat the TCB.

(4) External references-
(a) get TCBndx.
(b) get memory.
(c) cksum. "
(d) ip-send.
(e) give memory.

(5) Process description:
When a connectidn is to be closed a 'FIN' is Sent much

like a 'SYN' at the beginning. This procedure sends a fin
and changes the state of the connection appropriately.
Like TCP send, all the necessary protocol information is
inserted in the outgoing packet.

d. Check retrnsQ.
(1) Type - Procedure. .. .
(2) Purpose - To check packets on the

retransmission queue for retransmission if the foreign host
does not acknowledge receipt.

(3) Description of parameters -
(a) tcpad - local TCP addressused to

locat the TCB.
(4) External references-

(a) get TCB ndx.
(b) trn ck.

(5) Process description:
Even though ETHERNET is highly reliable there is no

guarantee that a packet gets to its destination. The
TCP/IP protocol allows for lost packets and is able to
recover from it. One of che requirements for this amount
of robustness is a retransmission queue to retransmit
packets that have not been acknowledged. To implement the
queue we save all outgoing packets sent by TCP send in a
queue in the TCB. When acknowledgements come in the
packets are removed from the queue. During the polling of
the ports every 'loopstopoll' is used to check the
retransmission queue for the connections in TELNET and FTP.
If a packet remains in the queue for 10 of these checks
then it is retransmitted.

D. PACKAGE IPsend.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC. V

97

Ad

-_-4
.1 "%''



Ir. .77.7,.W

e. Operating system - CP/M-86.
f. Package description:

Package IP send is used to implement the INTERNET
Protocol in outgoing packets. The IP protocol is not a
major influence in the operation of our connections since
it is designed mainly for crossing to different networks by
breaking up packets into smaller ones or combining packets
into bigger ones. Since we are using only ETHERNET the IP
portions has no significance other than having to implement
it because the other hosts on ETHERNET use it.

2. SUBROUTINES.
a. IP send.

(1) Type - Procedure.
(2) Purpose - To implement the IP protocol of

in outgoing packet.-
(3) Description of parameters -

(a) inx - memory block index.
(b) rslt - a boolean to signal whether

lower level processes sent the packet. -'-"
(4) External references 

(a) arr to int.
(b) cksum.
(c) eth send.

(5) Process description: see package
description, sepca

E. PACKAGE ETHsend.
1. CONFIGURATION.

a. Language - Janus/Ada. 4
b. Compiler version - 1.47.
c. Linker version- 1.47. r %

d. Target hardware - Intel 86/12A SBC. ,*. %

e. Operating system - CP/M-86. -e

f. Package description:
Package ETHsend is used to implement the ETHERNET

protocol of a packet. To send a packet over ETHERNET an
ETHERNET address must be used. A table is maintained with
currently known addresses. ETH snd checks the table for
the ETHERNET address. If found, it sends the packet out,
if not found it sends out a special broadcast packet to all
hosts on the ETHERNET requesting the particular host with
the IP address listed to report back its ETHERNET address.
If the latter case occurs then the original packet is
effectively lost and will have to be sent again later.
This normally occurs when connecting to a host for the
first time since the system was re-booted.

The control program executing in the concentrator can
be thought of as two independent processes, one for sending
packets out and polling the terminals, the other for
receiving packets from ETHERNET and distributing them to

98

. ."... . .,,



the appropriate places. The receiving process, however,
sends acknowledgements out on ETHERNET as well.

F. PACKAGE rcv.
1. CONFIGURATION. %Z

a. Language - Janus/Ada. %

b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CM/M-86.
f. Package description.

Package Rcv is the first high-level routine that
receives packets from the ETHERNET. Ntrpthdl (interrupt
handler) is the procedure at the interrupt vector whenever
an interrupt occurs. The only interrupt implemented is that
of the N13010 controller board. There are four cases for
an interrupt by this board (1) upon receipt of a packet
(rcv pck), (2) when the DMA transfer is complete after
receiving a packet (rcv DMA dn), (3) when the DMA transfer
is complete when transmitting a packet (txDMA dn), and (4)
when the DMA transfer is complete when transmitting a
packet after having already interrupted from a rcvDMAdn
(disable). The difference between 3 and 4 will be
discussed shortly.

The programming of the N13010 board for receiving and
transmitting packets is discussed in the manufacturer's
ha~rdware manual. We have modified the manufacture's ..
recommended algorithms in order to enhance concurrent
processing. For instance, rather than have the
concentrktor idlely loop waiting for a DMA transfer to end
we continue processing other procedures until an interrupt
occurs to let us know the process is complete. To41- 6

implement this strategy fully an interrupt labeled
'disable' was created to allow transmissions from ether
side of the interrupt (remember the two independent
processes in the controlling program). Lets discuss these
four different interrupts separately:

Interrupt Discussion
rcvpck The N13010 is initialized to start with this

type of interrupt. If a packet is received , ..

an interrupt occurs. In handling this type, . .
a memory block is gotten for which to do the
DMA transfer to. The address of the memory
block is sent to the N13010 board and the V
next type of interrupt is enabled,
rcv DMA dn. .

rcvDMA dn Once this interrupt occurs the received
packet can be looked at to determine where to
send it for processing. As a result of this
packet, another packet may be transmitted out

4. 99

•A,• %. . ..'.



(ie. acknowledgement of the former).
Therefore, upon return to this procedure one
of three cases could be occurring (1)
tx DMA dn (2) rcv_pck or (3) disable(no
change). For the latter two the able
register is set to receive another packet.
This cannot be done before this point else
multiple interrupts could cause the runtime
stack to overflow.

_DMA dn When a memory block has been DMA'd to the
N13010 board it is ready to be sent by the
ld snd (load and send) command.

sable The only interrupt that can occur during
execution of the interrupt side of the -.,

4.indepehdent processes is a tx DMA dn. If
tx DMA dn is used instead of disable,
however, a second interrupt could occur on
top of the first. To prevent this disable
loads and sends the packet but does not
enable receipt of another packet.

note: The variable 'ntrpt' stores what the N13010 board was
last enabled to interrupt to.

2. SUBROUTINES.
a. ntrpt hdl.(1) Type - Procedure.

(2) Purpose - To handle N13010 interrupts.
(3) Description of parameters - none.
(4) External references-

(a) outprt.
(b) perfcmd.
(c) get memory. .4.
(d) wr ad.
(e) ip-rec.
(f) cony blk.
(g) give memory.

(5) Process description see package
description.

G. PACKAGE ETHrec.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CM/M-86.
f. Package description.

Package ETHrec is used strictly to respond to address
resolution packets. A packet can be of two types (1) a
remote host asking for our ETHERNET address or (2) a remote
host responding to our asking it what its ETHERNET address
is. The ad tbl is updated appropriately upon receipt of ..V
the latter.

100

"_....-



P.

H. PACKAGE IPrec.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CM/M-86.
f. Package description.

Package IPrec checks the IP protocol of incomming
packets for appropriate fields being correct including the
local IP address. If everything is correct it passes the
packet on up to TCPrec.

I. PACKAGE TCPrec.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version - 1.47.
c. Linker version - 1.47.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CM/M-86. ..-. *

f. Package description.
Package TCPrec is the most complex package in the

control program due, primarily, to all the checks it must
make for any incomming packet. The best source of
information about what checks are made is the Internet
Protocol Transition Workbook. Two checks that are omitted
in our implementation are the precedence and security
checks. In addition, we do not test the checksum fields
since ETHERNET has a reliable CRC field that assures proper
transmissions. The basic functions of TCP rec is to update
the TCB table of the respective connection, send proper
acknowledgements and send any data up to the respective PCB
for that connection.

2. SUBROUTINES.
a. Conv blk snd.

(1) Type - Procedure.
(2) Purpose - To take a received packet and

reverse all the fields for transmission back to the sender.
(3) Description of parameters -

(a) blk - memory block index.

(b) sent - boolean to indicate if the
packet was sent.

(4) External references -
(a) upper nibble.

* (b) cksum.
(c) ipsend.
(d) give memory.

(5) Process description:
I This procedure uses the memory block of an incomming

packet to send a reply by changing the destination fields
to source fields and vice versa.

101

. % °"



b. Sendack.
(1) Type - Procedure.
(2) Purpose - To send an acknowledgement to a

received packet.
(3) Description of parameters -

(a) blk - memory block index.
pce (b) nr - TCB index.

(c) sent - booleanto indicate if the
packet was sent.

(4) External references -

(a) cksum.
(b) ipsend.
(c) give memory.

(5) Process description:
To acknowledge receipt of a packet this procedure takes

the appropriate fields out of the TCB to fill out a packet
that has no data but simply acknowledges new data received.

c. PCB clsing.
(1) Type - Procedure.
(2) Purpose - To set the PCB to closingwhich

allows clearing of the receive queues and termination of a
connection.

(3) Description of parameters -
(a) prt - port number.

(4) External references - none.
(5) Process description:

PCB clsing - Upon receipt of a 'FIN' the PCB state is
set to closing. Closing allows any undelivered data in the
port queue to be sent up to the terminal.

d. updateretrnsQ.
(1) Type - Procedure. \5$
(2) Purpose - To clear out any acknowledged

packets from the retransmission queue.
(3) Description of parameters - .. o-,

(a) nr - TCB index.
(b) ack - lastest acknowledgement number.

(4) External references - givememory.
(5) Process description:

This procedure loops through the linked list of memory
blocks on the retransmission queue looking for all packets *-. .- '.
that have been acknowledged with the lastest acknowlegement
number.

J. PACKAGE PCBrec.
•% .

1 . CONFIGURATION.
a. Language - Janus/Ada.
b. Compiler version 1.47.
c. Linker version 1.47. *. -' -

102

-. ~. r.,-



-7 V- 1%.. - 7

d. Target hardware - Intel 86/12A SBC.
e. Operating system - CP/M-86

2. SUBROUTINES.
a. PCB rcv.

(1) Type - Procedure.
(2) Purpose - To queue up thereceived data V

packets for further transmission to the respective port.
(3) Description of parameters -

(a) inx - memory block index.
(b) prt - port number.

(4) External references - none.
(5) Process description: Receipt of a packet

containing data to be sent to a terminal requires storing
the memory block containing the packet in a queue so that
subsequent polls of the PCB in 'poll' will find the packet
and send it to the terminal. Since two connections can
exist at the same time to the same port, PCB rec must .*.,-.
determine if the data is for the first connection or
second. Two queues are used, 'prtQ' and 'sprtQ'.

b. Adv PCB state.
(1) Type - Procedure.
(2) Purpose - To change the PCB state to

either rlogn or rftp.
(3) Description of parameters -

(a) nr - port number. e_. .

(4) External references - none.
(5) Process description:

Adv PCB state - When a packet is received with a 'SYN'
bit set-then this procedure is call. If che PCB state is
r init or f init then the state is advanced to their
respective established state.

K. PACKAGE CONVBLK

1. CONFIGURATION.

a. Language - Janus/Assembly.
b. Compiler version 1.4.6.
c. Linker version 1.4.7.
d. Target hardware - Intel 86/12A SBC.
e. Operating system - CP/M-86
f. Comments - Package Convblk is the smallest and

simplest package in this system. It is used to implement
an overlay while evading the strong typing of the Ada
language.

2. SUBROUTINES
a. Conv_blk .z,-z.

(1) Type - Procedure.
(2) Purpose - To allow an overlay type

conversion on the data structure 'mem' allowing two

103

1P

.4L.



different packet formats to be handled by the same physical
memory area. .. A

(3) Description of parameters - 0.
(a) 'Nr': The memory block array index to

be used as an ETHERNET packet.
()External references: Eth rcv.

(5) Process description: When a packet is
received it can be one of two kinds. The memory blocks
which a packet is put in is a record with fields for one of
the two types. To transform a memory block to the otheri type a simple jump command is executed in assembly
language. A procedure calls the assembly routine with a
memory block as the parameter. The assembly routine jumps
to another high-level Ada routine that expects a memory
block of the other- type to be passed in. None of the
procedures know the difference and the transform is made.

L. PACKAGE NTRPTHD *-

1. CONFIGURATION.
a. Language - Janus/Assembly.
b. Compiler version 1.4.6.
c. Linker version 1.4.7.
d. Target hardware - Intel 86/12A SBC. .
e. Operating system - CP/M-86
f. Initialization - The initialization routine

places the 20 bit address of the interrupt routine in the
interrupt vector section of memory.

2. SUBROUTINES
a. Assy ntrpt hdl

(1) Type -Procedure.

and (2) Purpose - Save the state of the machine
adcall the routine to resolve the ETHERNET controller

interrupt.
(3) Description of parameters - NA
(4) External references: Ntrpt hdl
(5) Process description: The interrupt .

* routine saves all the registers then calls the high-level
routine 'rcvl to handle the interrupt. Remember, when a
Janus/Ada assembly package first executes, any assembly

* code not jumped over is executed before any main program is -

* begun.

M. PACKAGE LIB a.-

1 . CONFIGURATION.
a . Language - Janus/Ada
b. Compiler version 1.4.7.
C. Linker version 1.4.7.
d. Target hardware - Intel 86/12A SBC.

104



e. Operating system - CP/M-86
f. Comments - Package Lib contains all the high-

level library routines we have developed for the system.
Just about every other package 'withs' the lib package and
uses one or more of the procedures.

2. SUBROUTINES
a. Get memory

(1) Type - Procedure.
(2) Purpose - Get memory is called when a

process has a need to store a packet in the main memory of
the concentrator. Get memory allocates memory blocks and
performs other memory management functions.

(3) Description of parameters:
(aj 'Next' is the array index of the

memory block requested. If 'next' is returned as '0', no
memory is available.

(4) External references: NA.
(5) Process description: To allocate memory

in which to store packets we have declared an array of
records, the records being individual memory blocks.
Pointers are used to keep track of which blocks are in use
and which are not. The getmemory routine takes the first
available block (if any) and returns the index to that

* block. It also increments the used blk variable which
counts how many blocks are in use at any given time. The
routine also manages the rcv wnd variable which is used to "
tell foreign hosts how much data we are willing to accept
at any given time in a packet. As soon as the used blocks
is above 50% of the total number of blocks available, the
window is changed to zero indicating the remote should not
send anything else until we have a chance to clear out
memory. ...-

b. Give memory
(1) Type - Procedure.
(2) Purpose - Givememory is called when a

process has completed processing of all data within a
memory block and is ready to return that block to
availability. Give memory inserts the index to the block
into the availability queue and performs other memory
management functions.

(3) Description of parameters:
(a) 'Inx' is the array index of the

memory block to be returned. a

(4) External references: NA.
(5) Process description: - As with

getmemory, the give-memory procedure manages the rcv wnd,
only the window is opened back up to normal size-(512
bytes) when the used blk variable is 33% of the total.
'Inx' is inserted in the front of the queue and the
usedblk counter is decremented.

105

~v ~ ~ * % % * ~ *~ ** --*** %."**0.*** *o*



W-' . q

c. Perf cmd
(1) Type - Procedure.
(2) Purpose- To send an instruction to the

ETHERNET controller board. Commands and procedures are
detailed in the Interlan ETHERNET Controller Handbook.

(3) Description of parameters:
(a) 'Cmd' is a byte representing an

ETHERNET command. %

(4) External references:
(a) Inprt
(b) oTstbit

(5) Process description: - To instruct the
N13010 board to perform a command the command register of
the board is written to. The interrupt register is then
read until bit zerb is set, at which time the statusregister is read. If the status register is greater than
one an error has occurred in the board. .

d. Trnpck
(1) Type - Procedure.
(2) Purpose - To initiate a DMA transferfrom

memory in the 86/12A to the ETHERNET controller board.
(3) Description of parameters:

(a) 'Ad' is the address of the first byte
of data to be transferred.

(b) 'Size' is the number of bytes to be
transferred.

(4) External references: "
(a) Outprt .
(b) oTstbit

(5) Process description: - If the state of
the controller is 'disable' then the input address is
converted into the 20 bit address necessary to perform DMA
transfer over the MULTIBUS and written to the proper ports
to allow immediate transfer. Otherwise, this procedure
wait for the state to change before performing its transfer
fur...-Lion. The algorithm for the former case is outlined in
the manufacture's manual for the N13010 board.

e. Resolve ad
(1) Type - Procedure.
(2) Purpose - Convert the INTERNET addressof

an alleged ETHERNET host into an ETHERNET address.
(3) Description of parameters:

(a) 'Ipad' is the INTERNET address to be
resolved. It is 'in out' status to save space and is not V
modified by this procedure.

(b) 'Eth ad' is the address of the
ETHERNET controller board assigned to this host. The
address table is a dynamic structure maintained by another
procedure.

106

4.,.

4 -._



(c) 'Rslt' indicates whether the IP

address was found in the table or not.
(4) External references: NA.
(5) Process description: - This process looks

up the input IP address in the dynamic address table
'ad tbl' which is declared in Globall.

g. Get tcb ndx
(1T Type - Procedure.
(2) Purpose - Establish a one-to-one mapping

between local TCP addresses in use and indices to the TCB
table. More simply, to find the TCB index for a connection
from the local TCP address of the connection.

(3) Description of parameters:
(a)' 'Arr' is the TCP address to be used

to find the TCB table entry.
(b) 'Index' is the array index of the TCB

entry corresponding to the input TCP address.
(c) 'Found' indicates whether the TCP

address was found or not.
(4) External references: NA.
(5) Process description: - The TCP address to

TCB index mapping is accomplished by use of a hashing
function.

h. Pcb cls
(1) Type - Procedure.
-(2) Purpose - Reinitialize and normally

terminate a Port Control Block entry.
(3) Description of parameters:

(a) 'Prt_num' is the PCB table index to
be closed out.

(4) External references: Outprt
(5) Process description: - The pstate,

time wait, and buf in cnt fields in the PCB record are
reinitialized and a-control character is sent to the Z-100
to ensure termination.

i. Pcb abort
(1) Type - Procedure.
(2) Purpose - Reinitialize, clear out data and

transmission ques, and terminate a Port Control Block
entry for the specified port.

(3) Description of parameters: ,\-.
(a) 'Prt' is the PCB table index to be

closed out.
(4) External references:

(a) Outprt
(b) Give memory

(5) Process description: Pcb abort will return
memory locations attached to the port's primary queue,
change the state to allow final close out, reinitialize the

107

-,;j ' d



time wait field in the PCB entry, and send the close code
to the Z-100. The state is set to closing to allow an FTP
process to clear data from its secondary connection before .
the memory is returned.

j. Tcb abort
(1) Type - Procedure.
(2) Purpose- Clear out the retransmission

queue and reinitialize the port number field of the TCB V
entry for a TCP connection that is being closed.

(3) Description of parameters:
(a) 'Ndx' is the index to the TCB table

entry to be closed out.
(4) External references: NA.
(5) Probessdescription: The retransmission

queue is traversed from front to rear and each memory
location returned. The PCB port number field is set to
'99' to indicate the port is inactive.

k. Activate prt
(1) Type - Procedure.
(2) Purpose- Add a port that has requested

service from the concentrator to the. active ports list.
Inactive ports are only polled every 10,000 or so loops for
activity while active ports are polled on each loop.

(3) Description of parameters:
(a) 'Prt' is the port number to be

activated. -
(4) External references: NA.
(5) Process description: The port specified

is added to the queue to be polled.

L. Give-status
(1) Type - Procedure.
(2) Purpose - Supply information concerning

the activity within the concentrator to the user and
maintenance programmer.

(3) Description of parameters: 'Port' is the '
terminal number.

(4) External references:
(a) Get tcb ndx
(b) Get-memory
(c) Outprt
(b) Osetbit

(5) Process'description:
This procedure produces a packet which contains the

state of execution for all the terminals and includes a
status block from the N13010 board for ETHERNET
transmissions. Codes are used in the packet to identify
the various states of the PCBs and TCBs. The first byte in
the packet is the number of terminals there are, enabling
various implementations of the system. Status can only be

108



requested by a terminal in the local or listen state. P-

Interface to the Concentrator

To understand the interface to the concentrator
requires understanding the RS232 serial communications ,4

hardware.

terminal or computer 1concentrator
I (connected via modular
phone connector)

signal gndl<--7 --------->isignal gnd
data set readyl<--6 -------<--Idata terminal ready

data term readyl-->20 -------- >Idata set ready
receivel<--3 ------- <--itransmit

transmitl-->2 --------- >Ireceive _
shield gnd 1------------ishield gnd

carrier detectl<--8-I I ---- >Icarrier detect
clr to sendl<--5-I I ---- >Iclr to send '.
req to sendl-->4-I 1--<--Ireq to send

ring indicatorln/a n/airing indicator

The line numbers represent pin connections on a 25 pin 'D' -N
connector.

Since communication is bi-directional there is no
master-slave relationship or DCE-DTE correspondence between
the concentrator and the connected computers.
Communication comes in two forms from each end of the line: .'

1. Control codes to effect action or pass
acknowledgement. Control codes are sent at any time
necessary by simply writing to the data port of the
connected UART. See globall.spc file for a list of control
codes.

2. Packets of data to be sent on to a destination.
Packets are sent with the use of handshaking signals.
Because the communication is bi-directional and control
codes are used, some rather unique problems had to be -'.--

overcome. To send a control code at any time the
transmitter had to be available without relying on the
receiver to enable it. To receive control codes at anytime the receiver had to be enabled at all times.
Therefore the request to send (RTS) and clear to send (CTS)
signals were not utilized due to their side effects. One
signal line is used for a dual purpose of requesting to
send data and acknowledging preparation to receive data.
This signal line is the Data Terminal Ready (DTR) out line
which is connected to the Data Set Ready (DSR) in line. No
other signal line is available on the RS232 in our hardware
configuration that could function as one of these purposes -'-:'
without having a side effect. Therefore, the problem was

109 -' ,



to use the signal line without it being mistaken for the
wrong signal. For example, if the concentrator wanted to
send data to one of the terminals it would set DTR. If
that terminal also wanted to send ditta to the concentrator
it would also set DTR. Receipt o' DSR on the other end
would tell the receiver that its DTR has been acknowledged,
therefore both the concentrator and terminal would proceed
to transmit data at the same time. Of course the data ...
would be lost in this situation. A means was devised to
ensure that receipt of a DSR could only mean one thing at
that particular moment. Two common assembly routines was
devised for such purpose.

N. PACKAGE LOCAL.

1. CONFIGURATION.
a. Language - Janus/Ada. -o

b. Compiler version 1.5.
c. Linker version 1.5.
d. Target hardware - Zenith model 100.
e. Operating system - MS-DOS.
f. Package description:

This package initializes memory, sets the interrupt
mask, gets the login name, establishes connections, polls
the keyboard for user inputs, polls the RS232 port for any
packets or control codes, polls the local control blocks
for any needed actions, and polls the transmission queue
for outgoing packets.

2. SUBROUTINES.
a. Handle kybd input.

(1) Type - procedure.
(2) Purpose - identify input characters from

the keyboard and process as necessary.
(3) Description of parameters -

(a) ch - character to process.
(4) External references -

(a) get-memory.
(b) prompt.
(c) prntdata.
(d) give memory.
(e) deactivate.
(f) cksum.
(g) information.
(h) put intrnsQ.
(i) activate.

(5) Process description:
Inputs are handled from the keyboard as bytes and are

processed in accordance with the state of the current LCB
(current means the prompt number or destination terminal
number). A case statement is used for the state of the
LCB, then, within each case is another case statement for

110

. . . . .. .



L!~
the byte input. Commands are initiated and states are
changed as necessary depending on the input. O' -

L!.

b. Handle-incoming _packet.
(1) Type - Procedure.
(2) Purpose - To act on any packets that are

received over the RS232 port.
(3) Description of parameters - -e

(a) blk - a memory blockcontaining a
packet that was received.

(4) External references -
(a) addtoQ.
(b) activate.
(c) prntdata.
(dj create FCB.
(e) put in-trnsQ.
(f) receive file.
(g) close FCB.
(h) prompt.
(i) givememory.

(5) Process description:
This procedure processes any packets received from the

RS232 port or calls an appropriate procedure to handle the
packet. The key to the processing is the type field in the ...-
packet and what state the LCB is in of the source terminal.

c. Established.
(1) Type - Procedure. 4
(2) Purpose - Polls the keyboard, LCBs, RS232

port and transmission queue.
(3) Description of parameters - none.
(4) External references -

(a) give memory.
(b) close file.
(c) prompt.
(d) get_trns.
(e) send trns.
(f) getmemory.

(5) Process description: . i
This process is continually polling all connection

ports for any needed processing. A continual polling
routine such as this allows many transactions to be carried
out simultaneously because the user is not locking up the
system with slow inputs from the keyboard. One of the
primary concerns was to maintain a continuous poll of the
RS232 port for any incomming packets which frees up the
concentrator process once a packet is sent. During the
polling process, appropriate routines are called when
action becomes necessary.

,.4i

" . r



0. PACKAGE FILEXFER.
1. CONFIGURATION.

a. Language - Janus/Ada.
b. Compiler version 1.5.
C. Linker version 1.5.
d. Target system -.Zenith model 100.
e. Operating system - MS-DOS. V,
f. Package description:

This package handles all commands that require file
access. A parser is implemented to parse a user input into I
8 character filenames and 3 character extentions. The
status of file transfers are maintained in the LCBs. If a
file data packet is sent to a single terminal it is also
queued until an acknowledgement is received indicating
proper transmissidn, else the packet is set up for
retransmission.

2. SUBROUTINES.
a. Parse.

(1) Type - procedure.
(2) Purpose - To parse a user's input into

filenames for access to the system disk files.
(3) Description of parameters -

(a) blk - a memory block containing the
user's input.

(b) FCB - a file control block. ,
(c) EOL - End of Line boolean output.

(4) External references -
(a) capital.

(5) Process description:
When this procedure executes, it takes the user input

from the memory block and puts a pointer on the beginning
character, one on any decimal point designating the
extension, and one on the filename separater (',') or at
the end of line. The process then begins to validate the
filename and writes it to the name field of the FCB. Once
the name is finished, the extension is validated the same
way. This procedure was written because the CP/M operating
system does not have a parse system call as the MS-DOS
system has. It is desired to have the local system written
for CP/M-86 as is MS-DOS.

b. Create FCB.
(1) TYPE - procedure.
(2) Purpose - To initialize a file control

block and open the file. A "
(3) Description of parameters- N

(a) blk - a memory block containing apacket received..'-

(4) External references -

(a) putintrnsQ.
(b) prntdata.

112

., %.

-' . * ............... .......... ...........""........ .......... '......-_,_ . _. . , '.h
6.', _ s 'L. . .'7 ,i L., % - *-, . -- - .- - '- --.- ' .° " . . . ... .. .. . . .. *. . - .- .*.,_ *. _



(C) create-file.
(d) give memory.

(5) Process description:
If the state of the LCB for the sender of the packet is

ready to open a file, then the file is created which also . .,
deletes any file existing by the same name. The file name.
is contained in the packet received. An acknowledgement
packet is prepared with success or failure of this process. -

If the state is not proper for opening a file, a packet is
prepared for transmission to the sender of type 'unable'.

c. Receive file.
(1) TYPE - procedure.
(2) Purpose - To write to disk file datathat

is received from another terminal.
(3) Description of parameters -

(a) blk - a memory block containing file
,, ~data•...[[[

(4) External references -
(a) setDMA.
(b) write file.
(c) put in trnsQ.
(d) give memory.
(e) cksum.

(5) Process description: " *,.
File data is received and written in an opened file.

One of four responses will occur, no acknowledgement packet
is sent because it is a broadcast packet that was received.
A packet indicating a good transmission is sent. A packet
indicating a bad transmission is sent. A packet indicating
unable to write to file because the file is not open.

d. Close file.
(1) -TYPE - Procedure.
(2) Purpose - To close a file.
(3) Description of parameters -

(a) blk - a memory block.
(4) External references -

(a) put in trnsQ.
(b) closefile.
(c) give memory.

(5) Process description:
This procedure closes an opened file and sends a reply

to the sender if the packet received is not a broadcast
packet.

e. Send file.
(1) Type - Procedure.
(2) Purpose - To read a file at the next

sequential point and send the data to a receiver.

113

"S[-

d 3T. '

. . . . . .. . . . . . . . . . . . . . . . . . . . . .".- *



(3) Description of parameters -

(a) prt - the terminal number of the
receiver.

(4) External references -

(a) close file.
(b) get memory. A,

(c) setDMA.
(d) readfile.
(e) givememory.(f) searchr nxt.

(g) open file.
(h) search frst.

(5) Process description:
When a file is being transmitted to another terminal,

this procedure creates the necessary packets to open a
file, send file data and close a file. The file names to
be sent are contained in a memory block held in the LCB
namQ. The memory block is parsed for each file name, the
name is then searched for and if found, a packet is sent to
open the file. Each subsequent packet contains the file i..,

data of 512 bytes. Once all the data is read from the file
the file is closed and a packet is sent to close the file Ir
on the receiver's terminal. File names are searched for
the first occurance then next occurance.

f. Send dir.
* (1) Type - procedure.

(2) Purpose - To send a directory listing to
another terminal.

(3) Description of parameters -

(a) prt - the terminal number of thereceiver. '.
(4) External references -

(a) setDMA.
(b) search nxt.
(c) parse.
(d) searchfrst.
(e) givememory. , .
(f) put in trnsQ.

(5) Process description:
This procedure will place up to 32 file names in a

memory block for transmission to another terminal when a
directory listing is requested from the other terminal.
Files are searched the same as procedure send file.

g. Information.
(1) Type - Procedure.
(2) Purpose - To display a text file to the

user containing useful information about using the system.
(3) Description of parameters -

(a) prt - the terminal number currently
being used.

114



.° ...-
,o..°

(4) External references -

(a) setDMA.
(b) read file.
(c) prntdata.
(d) close file.
(e) give memory.

(5) Process description: fie
This procedure reads data from a file that is open and

displays the text of the file on the screen until an ascii
character 'tab' is found or end of file. If end of file
then the file is closed.

d.

P. PACKAGE NAME: FTP.

1. CONFIGURATION
a. Language: JANUS/Ada
b. Compiler version: 1.5.0
c. Linker version: 1.5.0
d. Target hardware: Zenith model 100 micro-

computer
e. Operating system:

(1) Name: MS-DOS
(2) Version: 2.11 , .".

2. SUBROUTINE

a. FTP.
(1) Type subroutine: Procedure.
(2) Purpose: This procedure drives the

remote file transfer process on the NPS local area network. . . .

A signal and an address are sent to the concentrator
triggering the FTP command connection establishment. The
command/reply sequence then drives the process.

(3) Description of parameters: NA.
(4) External references:

(a) Lib.send cmd
(b) Getip.get addr
(c) Lib.process reply ..

(d) Lib. makereply
(e) Lib.getdataline
(f) Asmlib.send trns
(g) Asmlib.tstbit
(i) Bit.inport
(j)IO.open
(k) IO.write
(1) IO.close
(m) IO.ioresult

(5) Process description: The IP address of
the destination is returned by getaddress. Once the
control code has been sent to and answered from the
auxillary port, the address is sent out the auxillary port.

115 "- - "

°•~~~~~~~ N.° .- •" o+- ." .", . . . o- . - ° - ° • ° o . " % •w %4 
T

.•
•
•- -"



The process then becomes a cycle of sending commands and
processing replies. The dataline received may contain
either data or an FTP reply. FTP must inspect the first
character of the dataline to determine its content. That
first character is set by the concentrator before the data
is transmitted. If irregularities occur, 'get dataline' may ,,-.

insert a control code in the first byte. A control byte is
iiita
also attached to outgoing data.

The replies and commands used in this implementation of
FTP are a subset of the system specification in the
Stanford Research Institute, RFC-765. The possible
responses to commands listed on pages 46 and 47 of RFC-765
are followed very closely. If a reply is received that is
not allowed in response to the command issued most
recently, the reply .is ignored. This allows this system
to interface with different implementations of FTP. The
first acceptable reply to a command drives the system.

The state diagram for command/reply exchange from [pg.
55 of RFC-765 ] of the thesis and reproduced below, is
followed as closely as possible. Variations to this diagram
from the remote site have been detected when in
communication with the VAX when a second 500 level reply is
sent to clarify the first 500 level reply.

*Begin *

* 2

___V___ ..... > w___ 2 ____ s * .-
I cmd I I------>1 11*

* ^I A I------ *__-_"
*I---------I I I I * '

* 1 4,5

* I-------------------I I--> F *
* I ___*_ "'"

*cmd = Sendan FTPcommand. *
* W = Wait for reply. *
* S = Command executed successfully. *
* F = Command failed. *
* 1,2,3,4,5 = The first digit of the reply received. *
* ,

* FTP COMMAND/REPLY SEQUENCE STATE DIAGRAM *

The cycle ends when the user enters 'quit' and the quit
command is sent or when the connection is aborted by the
remote host.

116 .4 1
% z

4.-



Q. PACKAGE NAME: Lib.pkg

1. CONFIGURATION
a. Language: JANUS/Ada , -
b. Compiler version: 1.5.0
C. Linker version: 1.5.0
d. Target hardware: Zenith model 100 micro- %

computer o

e. Operating system:
(1) Name: MS-DOS
(2) Version: 2.11

2. Subroutines.

a. Send cuid.
(1) Type subroutine: Procedure.
(2) Purpose: Send cmd prepares a string in ..

FTP command format and passes that string out the auxillary
port.

(3) Description of parameters
(a) 'Cmd'is the enumerated type that

represents the FTP command to be sent.
(b) 'Parameter'is the string that

represents the FTP paramater that accompanies 'cmd'.
(4) External references:

(a) Asmlib.send trns
(b) Bit.inport
(c) Strlib.length
(d) Strlib.insert
(e) Bit.tstbit
(f) Asmlib.bytetochr

(5) Process description: Send command calls
internal subprocedure 'convert' to convert the enumerated
type 'cmd' into a string, concatenates that string with the
input string 'parameter', attaches a control byte as the
first character, and sends the resultant string out the
auxillary port. "..-'.

b. User-options.
(1) Type subroutine: Procedure.
(2) Purpose: Useroptions is called to

allow a user to enter his desired file transfer or _:
maintenance request. The FTP command corresponding to that
request is sent.

(3) Description of parameters
(a) 'Opt' represents the option that

the user selected and the command that this procedure
transmitted.... .

(4) External references:
(a) IO.is open
(b) IO.close

117

2 -'. A



r

(C) Funcs. get filename
(d) Funcs.get-opt 4.
(e) Funcs.get_parameter
(f) IO.ioresult
(g) IO.purge
(h) IO.open
(i) Lib.send cmd
(j) IO.create

(5) Process description: Useroptions is
called when a reply is received that does not in itself
require some action be taken. It is expected that if this
procedure is called, the user is logged in to the system.
From here, the user can request a file transfer, change
directory on the remote host, list the directory on the
remote host or terminate the process. The useroptions
procedure also opens and closes locfile for retrieving or
sending data to/from the remote host.

Useroptions displays the options that a user may
select, and prompts the user for a selection, attains a
parameter for the selected option and sends the command.

c. Send data
(1)- Type subroutine: Procedure.
(2) Purpose: Send data to a remote host on

ETHERNET.
(3) Description of parameters

(a) 'Lst cmd' is the variable that
keeps track of the state of this user FTP process.
(4) External references

(a) outport
(b) inport .-

(c) tstbit %"%
(d) keypress
(e) getch
(f) sendcmd
(g) read-
(h) end of file
(i) eof
(j) send trns
(k) close

(5) Process description: Send data is
passed control after a reply has been received indicating a
data connection is being established. Using control code
communication with the concentrator, send data determines
when the connection has been established, and sends the
data through the auxiliary port.

The data is transmitted in packets of 512 bytes because
this is the max packet size of transmission for the
concentrator. The user is queried to determine if the file
to be transmitted is a text file to allow correct end of
file identification.

118

I. •
................................... .-.



d. Get data
(1T Type subroutine: Procedure.
(2) Purpose: Get data is the routine that

accepts data from the remote site and dispenses itappropriately...,..-""
(3) Description of parameters

(a) 'Opt' represents the last command
that was transmitted.

(b) 'Ctr' is the number of bytes passed -"
in the parameter 'byte_array'.

(c) 'Byte array' contains the data
received from the remote site.

(4) External references:
(a) IO.write
tb) Asmlib. prntdata

(5) Process description: Get data
identifies the data as a directory listing to be printed on
the console or as file data to be written to the global
file 'locfile' by the last command that was transmitted
('Ist cmd'). The file is opened in 'user options' and
closed in 'process reply' when a reply indicates the
transfer is complete. If abnormal termination occurs the
file is closed in 'FTP'.

Data may be several packets long. The display of a
listing on the console will be continuous from packet to
packet. The opening and closing of ' locfile' in
'user options' allows the data from subsequent packets to
be added at the end of the file.

e. Get dataline.
(1) Type subroutine: Procedure.
(2) Purpose: Get dataline receives data and

control characters from the concentrator and passes the
results to the caller.

(3) Description of parameters
(a) 'Dataline' contains the data

received from the concentrator.
(b) 'Ctr' is the number of bytes passed

out in the parameter 'data line'.
(4) External references:

(a) IO.keypress
(b) IO.is open
(c) IO.close
(d) Asmlib.gettrans
(e) Asmlib. prntdata
(f) Bit.outport
(g) Bit.tstbit
(h) Typpkg.locfile
(i) Bit.inport
(j) Asmlib.getch

119,.

119 %
e,.

°.rn



F' d ' .

4- (5) Process description: Procedure
'get dataline' will wait for the user to enter control
right bracket, timeout to be reached, a control character
received, or data received from the concentrator. Timeout
does not terminate the process but is included to allow
future expansion. Its major function is t6 clear any
handshaking signals that may have been inadvertantly set.
If a control character is received or control right bracket
detected, the first character of 'dataline' is set to the

* appropriate control code. Code-abort tells the caller to
stop the process immediately and code_cls means terminate
the process normally.

f. Make_reply.
(1) Type subroutine: Procedure.
(2) Purpose: Makereply receives the reply

as an array of bytes and converts that array into an
integer 'reply' and a string 'parameter'. The results are
returned and displayed on the console.

(3) Description of parameters
(a) 'Dataline' contains the data bytes

from the concentrator that are the FTP reply and parameter.
(b) 'Ctr' is the number of bytes in the .

parameter 'data line'.
(c) ' Reply' is the integer

representation of the FTP reply identification number.
(d) 'Parameter' is the string

representation of the FTP parameter to the reply.
(4) External references:

(a) Asml ib.prntdata
(b) Asmlib.byteto char
(c) Strlib.insert
(d) Strlib.str to int .

(5) Process description: The conversion of

the first fifth through last bytes to a string is done
first. Each byte is converted to a character and inserted
in to the string. The second through the fourth bytes are
converted into an integer by converting each byte into a

- character, adding the three characters to a string and
converting the string into an integer. The first byte in
the array is a control code.

g. Process-reply
(1) Type subroutine: Procedure.
(2) Purpose: Process reply is the workhorse

of FTP. All replys received from the concentrator are
passed to this process for action. This procedure must
determine what command to send if any command is required.

(3) Description of parameters
(a) 'Reply' is the integer

representation of the FTP reply identification number. FTP V

120 • i .[[



replies are described in detail in [Internet Protocol
Transition Workbook, pg. 278-281].

(b) 'Parameter' is the string
representation of the FTP parameter to the reply. This
parameter is not generally used in determining the course
of action. It is displayed for the user.

(c) 'State' tracks the last FTP command
issued. This is used as the state of the process.

(4) External references:
(a) Lib.user_options
(b) Asmlib.byteto char
(c) IO.close
(d) IO.isopen
(e) Bit.outport
(f) Bit.tstbit
(g) IO.read
(h) Asml ib.prntdata
(i) Asmlib.send trns
(j) IO.close
(k) Funcs.getusername
(1) Lib.send cmd
(m) Getportnum
(n) Getpassword

(5) Process description: Processreply
takes a course of action determined by the reply received
and the last command that was sent. Any reply listed in
[Ref. 2] of the thesis is handled.

The last command issued may be considered the state of
the process. Each state combined with the reply received
is assigned a response. If a reply is received that is
inappropriate for the state of the process, the reply is
ignored. This situation is the result of the different
implementations of FTP. Since a server may or may not
return more than one reply to a particular command and
varying implementations have been experienced even in the
limited scope of this thesis, the user system must be able
handle many possible occurrences. This process simplifies
the problem by using the first acceptable reply to a
command as the key to its next action. Generally, the
second reply is only information for the user anyway so the
second and subsequent replies are displayed on the console.
Printing of the multiple replies in sequence is ensured by
issuing a 'noop' command before prompting the user to enter
his option. A description of the states and their
responses follows.

* (a) Send username. The FTP command
connection is established and the login sequence has begun.
If a username has been requested, only the user and quit
commands will be accepted by the remote server.

(b) Send password. Follows the 'send
username' state. A user must have an account assigned and
know the password to access files.

121 4
Ap.

i°--

. * . . . . . . ...-.



% % P

(C) Send portnum. In order for the
server to initiate the data connection, the concentrator
must be issue a port number. This information is retrieved
from the concentrator and transmitted to the remote server
via the 'port' command. The port command is sent whenever
the server does not have an up to date port number, ie, at
the beginning of the process or when the data connection
has been open and is closed.

(d) Send user option command. The goal
of FTP is to send and receive files. Once the preliminary
commands to set up the account have been accomplished, the
user is allowed to select his option. The appropriate
parameter is attached to this command, and the command is
sent to the remote site. The commands issued include:

((1))List the working directory
(nlst)

((2)) Change the working directory
(cwd)

((3)) Send a file (stor)
((4)) Get a file (retr)
((5)) Get help (help)
((6)) Delete a file (dele)
((7)) Quit the process (quit).

(e) Send data. Various data types,
modes, and formats are accepted by FTP. This
implementation allows only the defaults in these areas.
The defaults are:

((1)) Format: Ascii non-print
((2)) File structure: File
((3)) Mode: Stream

Before sending data, FTP coordinates with the
concentrator to ensure that the data connection is open. ,.,
When this is confirmed, the file is sent to the
concentrator in blocks of five hundred and twelve bytes.
The procedure 'processreply' does not relinquish control
of the processor until the entire file is transmitted. The •.. V
user is prompted to indicate whether the file is textural
or binary to allow accurate end of file detection.

When the entire file has been transferred, the local
file is closed and a control code is sent to the
concentrator to trigger closing of the data connection.
This indicates end of file to the remote server.

(f) Get data. The process enters this
state after the user has requested a directory list or
retrieve data and the server has responded by indicating s *

the data is on its way by sending an appropriate reply.

1.2-.

12 2 . *', ..



• .-

R. PACKAGE NAME: FUNCS.PKG

1. CONFIGURATION
a. Language: JANUS/Ada
b. Compiler version: 1.5.0 r. .
c. Linker version: 1.5.0
d. Targethardware: Zenith model 100 micro-

computer
e. Operating system: i.

(1) Name: MS-DOS
(2) Version: 2.11

2. SUBROUTINE

a. Getopt
(1) Type subroutine: Function
(2) Purpose: Getopt will displaypossible

file maintenance and transfer requests and return the
user's selection.

(3) Description of parameter: The command
that is returned is an enumerated type. 'Cmdtype' is
declared in 'Typ pkg.spc'. This represents an FTP command
as described in (Ref. 2] of the thesis.

(4) External references:
(a) IO.get line

(5) Process description: Get opt displays
the options that arb available to the user on the screen. 4
The user selects an option by entering the first letter and
carriage return. The selected letter corresponds to only
one command. That command is returned.

b. Getpassword
(1) Type subroutine: Function
(2) Purpose: Promptthe user to enter the

appropriate password and return that password in stringrepresentation. -<
(3) Description of parameter: The password

that is returned is to be used as a parameter to an FTP -.
command. It is represented as a string of characters.

(4) External references:
(a) Asmlib.no echo
(b) Strlib.insert
(c) Strlib.char to str
(d) Asml ib.bytetochr X-

(5) Process description: Get password
prompts the user to enter his password and reads the
keystrokes as bytes from the keyboard without echo to the
screen. The bytes are converted to characters, the
characters to strings, and the single character strings

. .

123

.4



inserted in to the password. The characters are inspected
to ensure only alphabetic characters have been entered.

c. Get username
(1) Type subroutine: Function
(2) Purpose: Prompt the user toenter the

valid user id and return the entered string.
(3) Description of parameter: The username

that is returned is to be used as a parameter to an FTP
command. It is represented as a string of characters.

(4) External references:
(a) IO.get line

(5) Process description: The user enters
his account id name followed by a carriage return. Only
alphabetic character* are allowed.

d. Getportnum
(1) Type subroutine: Function
(2) Purpose: The goal of getportnum isto

attain a valid port number to pass to the remote host in
the port command.

(3) Description of parameter: The port
* number that is returned is to be used as a parameter to an

FTP command. It is represented as a string of characters.
(4) External references:

(a) Bit.outport
(b) Bit. inport
(c) Bit.tstbit
(d) Asml ib.get_trns
(e) Strlib.int to str,
(f) Strlib.insert.

(5) Process description: In order for the
remote server process to initiate a connection to a
particular TCP (or port) address, the concentrator must
select the sequentially correct port number and perform
some initialization. Getportnum sends a control character
to the concentrator requesting a port number which triggers
this initialization. The port address that the
concentrator sends is four bytes long. The FTP format for
the 'port' command parameter requires the port address be a
string of characters with the four bytes represented as
characters in a string separated by commas. The bytes
received are converted into integers which are converted
into strings. The four strings are concatenated with
commas between them to form the string acceptable as the
'port' command parameter.

e. Get filename
(1) Type subroutine: Function
(2) Purpose: Get filename returns a string

containing a file name that meets the format required by
CPM and MS-DOS for file names.

124

• ,,.- .



(3) Description of parameter: The file name
that is returned is to be used as a parameter to an FTP
command. It is represented as a string of ascii
characters.

(4) External references:
(a) IO.get line
(b) Strlib.char to str
(c) Strlib.insert
(d) Strlib.length

t cr e (5) Process description: Get filename reads
the characters entered by the user when the carriage return
is detected. Each character of the string is then
scrutinized to ensure proper file name format. Leading and
trailing spaces are ignored. A string with a space in the
middle of the name 'will result in only the part of the
string before the space being recognized. If a drive
designator is included; a colon must be the second non-
blank character. The number of characters in the primary
file name are counted by the local variable 'name len'. If
nine characters are counted, not counting the drive
designator, before a period, space, or end of line is
reached, the file name is rejected as too long. IF a
period is encountered, the extension is validated. Only
leading spaces, alphanumeric characters, one colon, and one
period are allowed in a file name.

f. Get parameter
(1) Type subroutine: Function -4

(2) Purpose: The purpose of getparameter
is to attain a parameter for a command corresponding to an

. ~FTP command. .,
FPcmad (3) Description of parameters:

(a) The option that is passed in
represents an FTP command. Each FTP command accept a
unique type of parameter.

(b) The parameter that is returned is
to be used as a parameter to an FTP command. It is
represented as a string of ascii characters.

(4) External references:
(a) Funcs.getfil ename
(b) IO.get line

(5) Process description: Only seven ofthe
FTP commands implemented in this system require parameters
other than the null string. The file name required as J.,
parameter to the 'retr' and 'stor' commands is a filename
for the remote site. It is parsed by the remote site and
errors identified via FTP replys.

125
% A*

• ."%.4
",,*¢ . .*b" , " '.'. .". . - "". " . .,. ", . , . . - . " . - . -. . - . . -. " . . . " . - . . ' '' "



______, ____-. __-..,__, __._.K .r' ..-... - - . .--' - - 4---- - - -'. - .-- . - % - $ - . j -%".- •. .

S. PACKAGE NAME: GETIP.PKG

1. CONFIGURATION
a. Language: JANUS/Ada
b. Compiler version: 1.5.0
C. Linker version: 1.5.0

d. Target hardware: Zenith model 100 micro-
computer

e. Operating system:
(1) Name: MS-DOS
(2) Version: 2.11

2. SUBROUTINE .-1
a. Get addr

(1) Type subroutine: Procedure
(-2)Purpose: Get addr will display

available remote destinations to the user return the
address of the user's selected destination.

(3) Description of parameters: The four
integers returned by this procedure represent the four byte "

IP address of the desired destination.
(4) External references:

(a) Hosts.fil
(b) IO.open
(c) IO.close
(d) IO.get
(e) IO.end of file -
(f) IO.read
(g) IO.end of line
(h) IO.skip line

(5) Process description: Get ip printsthe
contents of the file 'hosts.fil' along with a selector
number and prompts the user to select his destination by
keying in a number. Getaddr then interprets the addr and
returns the selected address to the calling routine. The
address is read from the file as an array of integers and

4 the name as a string. The address is stored in four arrays
representing each byte of the address. The user selection
number then acts as the index of these arrays to identify
the correct address.

Additions to the hosts file may be required as hosts
are added to the ETHERNET. The correct IP address may be
obtained from the file 'hosts' on the VAX Unix or from a
technical representative. The address must be entered as
four integers separated by spaces. Each integer represents
one byte so each must be less than 256. The name is a
string of not more that 21 characters. The new entry must
be made in the following format:

(a) IP address byte one (<= 256)
(b) Space W

126

... . . . * . .- " . -. -. 4 .*Xd• *." -. * ...................................................................................................... * .- -'vC"-



(C) IP address byte two (<= 256)
(d) Space
(e) IP address byte three (<= 256)
(f) Space
(g) Host name (<= 21 characters)

T. PACKAGE NAME: ASMLIB.ASM

1. CONFIGURATION
a. Language: JANUS/ASSEMBLER
b. Compiler version: 1.5
c. Linker version: 1.5.0
d. Target hardware: Zenith model 100 micro-

computer
e. Operating system:

(1) Name: MS-DOS
(2) Version: 2.11

2. Comments

a. As stated in the Janus/Ada Users Man, the
discrete type input parameters for Janus/assembly modules
are stored on the stack with the last parameter closest to
the top. Output and other type paramaters are addressed by
the stack.

b. Also stated in the Janus/Ada Users Man,the

discrete value to be returned from Janus/assembly functions
must be placed in the al register just before returning.
Word values are returned in the ax register, and the
address of non-discrete types returned is returned in the
AX register. %e

C. Theinterrupts and function calls used are
standard to the operating system. Descriptions may be
found in the commercial documentation.

3. SUBROUTINES

a. Byte to char
(1) Type subroutine: Function
(2) Purpose: Allow assignment of a variable

of type byte to be assigned in to a variable of type
character. Bit seven is masked to ensure the byte
corresponds to an ascii character. -,

(3) Description of parameters:
(a) A value of type byte to be

converted is the input parameter.
% (b) The input value is returnedas a
% -character.

(4) External references: NA. .

127

. . °



(5) Process description: This function
masks bit seven of the input byte and returns the result as
a character.

b. Byte tochr
(1) Type subroutine: Function
(2) Purpose: Allow assignment of a variable

of type byte to be assigned in to a variable of type
character. The byte is not modified, allowing controlcharacters to be assigned into strings.

(3) Description of parameters:
(a) A value of type byte to be

converted is the input parameter.
(b) The input value is returnedas a

character.
(4) External references: NA.
(5) Process description: This function . .

returns the input byte as a character by moving the input "
value into the ax register.

C. Prntdata
(1) Type subroutine: Procedure
(2) Purpose: Display a value of type byte

on the console.
(3) Description of parameters

(a) A value of type byte to be
displayed on the console device is the input parameter.

(4) External references: Interrupt 21h
(5) Process description: This procedure

moves the input parameter to the dx register, masks bit
seven, sets the ah register and invokes the operating
system function call '21h'. This interrupt identifies the

"- function desired from the ah register and reads its input
from the dx register. The ascii representation of input
value will be displayed on the console.

d. Getch
(1) Type subroutine: Procedure
(2) Purpose: Return the value most recently

entered through the keyboard.
(3) Description of parameters

(a) The value of type byte most
recently entered through the keyboard is returned. -"-

(4) External references: Interrupt 21h
*(5) Process description: The registersare

set and a call is made to the operating system function to
return the byte representation of the character entered to
the keyboard. This value is placed at the address pointed
to in the di register to be returned.

128

- "''.

. ',',. ... I



file

e. Delete fl
(1) Type subroutine: Procedure .

(2) Purpose: Delete a file.
(3) Description of parameters

(a) The address ofthe file control
block of the file to be deleted is input to this procedure.
In Janus/Ada, addresses are represented as integers.

(4) External references: Interrupt 21h
(5) Process description: The registersare

set and a call made to the operating system that will
perform the desired file maintenance function.

f. Create file
(1) Type subroutine: Procedure
(2) Purpose: Initialize a file control

block for an unopened file.
(3) Description of parameters

(a) The address ofthe file control
block of the file to be created is input to this procedure.
In Janus/Ada, addresses are represented as integers.

(b) An integer indicating the status
p of the function upon completion is returned.

(4) External references: Interrupt 21h
(5) Process description: The registersare

set and a call made to the operating system that will
perform the desired file maintenance function. The file
control block must be declared by -the calling routine or an
address obtained from an existing FCB. FCB format and a
description of the system function may be found in the
Zenith/Heath Programmer's Utility Pack, chapters three and
four.

g. Openf fil1e
(1) Type subroutine: Procedure
(2) Purpose: Initialize a file control

block for an unopened file.
(3) Description of parameters

(a) Theaddress of the file control
block of the file to be opened is input to this procedure.
In Janus/Ada, addresses are represented as integers.

(b) Found indicates if the file named
in the File Control Block was found in the disk directory.

(4) External references: Interrupt 21h
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired file maintenance function. The file
control block must be declared by the calling routine or an
address obtained from an existing FCB. The FCB must be
correctly initialized in order for this procedure to work
correctly. FCB format and a description of the system
function may be found in the operating system
documentation.

129



Found will be set to false if the file identified in
the file name field of the FCB does not exist.

h. Write file
(1) Type subroutine: Procedure
(2) Purpose: Write a record to a disk file.
(3) Description of parameters

(a) Theaddress of the file control
block of the file to be written to is input to this --
procedure. In Janus/Ada, addresses are represented as .,.
integers.

(b) 'Succ' indicates if thewrite was
successfully completed.

(4) External references: Interrupt 21h
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired file maintenance function. The file
control block must be declared by the calling routine or an
address obtained from an existing FCB. FCB format and a
description of the system function may be found in the
operating system documentation.

'Succ' will be set to false if value returned in the AL
register is not equal to zero.

i. Close file
(1) Type subroutine: Procedure
(2) Purpose: Close a file.
(3) Description of parameters

(a) The address ofthe file control
block of the file to be closed is input to this procedure.In Janus/Ada, addresses are represented as integers.

(4) External references: Interrupt 21h
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired file maintenance function. A
description of the MS-DOS system kernel function may be
found in MS-DOS Programmer's Utility Pack.

j. Cksum -
(1) Type subroutine: Function
(2) Purpose: Computethe check sum of a

designated number of consequtive bytes.
(3) Description of parameters

(a) 'Addr' is the address of thefirst
of the bytes to be part of the check sum process. In
Janus/Ada, addresses are represented as integers.

(b) 'Amt' is the number of bytes to
compute the check sum for.

(c) The result of the check sum process
is returned. ,

(4) External references: NA.
(5)Process description: Compute cksum

performs an XOR of 'amt' bytes beginning at 'addr' and the

130

'-S . - . ' -~ . .P -o"A.4...i .



result is returned as 'cksm'. This check sum algorithm is
a simple check done only on data transmitted across the
RS232 serial lines connection to verify data.

k. Setdma
(1) Type subroutine: Procedure
(2) Purpose: Set the disk data transfer

address.
(3) Description of parameters

'Addr'is the address at which the disk
transfer is- to begin begin. In Janus/Ada, addresses are
represented as integers.

(4) External references: Interrupt 21h.
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired file maintenance function. A
description of the MS-DOS system kernel function may be
found in MS-DOS Programmer's Utility Pack.

1. No echo
(1) Type subroutine: Function
(2) Purpose: Return a character from the

keyboard with out displaying the character on the console.
(3) Description of parameters

Noechoreturnsthe character as type
byte.

(4) External references: Interrupt 21h.
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired console operation. A description of
the MS-DOS system kernel function may be found in MS-DOS
Programmer's Utility Pack.

m. Search frst L
(1) Type subroutine: Procedure
(2) Purpose:Verify the existence of a file ""

or match a filename that has wild card characters.
(3) Description of parameters

(a) 'Addr' is the addressof an
unopened FCB.

(b) 'Fnd' is a boolean thatindicates
if the file was found or not.

(4) External references: Interrupt 21h.
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired function. A description of the MS-DOS
system kernel function may be found in MS-DOS Programmer's
Utility Pack.

n. Search nxt
(1) Type subroutine: Procedure
(2) Purpose: Used after 'search frst' to

131



* - . .*... .. . A . .- -o

find additional entries that match a file name that contains
wild card characters.

(3) Description of parameters
(a) 'Addr' is the address of an

unopened FCB. Addresses are represented as integers in

Janus\Ada.
(b) 'Fnd' is a boolean that indicates

if the file was found or not.
(4) External references: Interrupt 21h.
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired function. A description of the MS-DOS
system kernel function may be found in MS-DOS Programmer's
Utility Pack.

o. Get trns
(1 Type subroutine: Procedure(2) Purpose: Receive one or more characters

across the RS232 connection between the Z-100's and theconcentrator. [[ [

(3) Description of parameters
(a) 'Addr' is the address that the

first byte of the data is to be stored into. Addresses arerepresented as integers in Janus\Ada.

(b) 'Dprt' is the port data port
address the data is to be received from.

(c) 'Amt' is the maximum number of
bytes to be received on input and is returned as the numberof bytes recieved.

(4) External references: NA.
(5) Process description: The data is read

one byte at a time until the amount count is reached.
DSR/DTR handshaking is performed before each character is
read. For a state diagram of the handshaking, see
[Hart\YAS86].

p. Send trns
(1) Type subroutine: Procedure
(2) Purpose: Send one or more bytesacross

the RS232 connection between the Z-100's and the
concentrator.

(3) Description of parameters
(a) 'Addr' is the address of the first

byte of the data to be transmitted. Addresses are
represented as integers in Janus\Ada.

(b) 'Dprt' is the port data port
address the data is to be transmitted to. ..

(c) 'Amt' is the number of bytes to be
transmitted on input and is returned as the number of bytes ..,
actually sent. i- .

(4) External references: NA.

132 .'0..%
.-A:.m

............................... ..



(5) Process description: The data is sent
one byte at a time until the amount count is reached.
DSR/DTR handshaking is performed before each byte is sent.
For a state diagram of the handshaking, see [Hart\Yas86].

q. Read file
(1) Type subroutine: Procedure
(2) Purpose: Read a record from a disk

file. --
(3) Description of parameters

(a) 'Addr' is the address of the file
control block of the file to be read. In Janus/Ada,
addresses are represented as integers.

(b) 'Rslt'is an integer that identifies
the result of the read. The details of the System Kernel
Function may be found in the programmer's utility pack.

(4) External references: Interrupt 21h
(5) Process description: The registers are

set and a call made to the operating system that will
perform the desired file maintenance function. The file
control block must be declared by the calling routine or an
address obtained from an existing FCB. FCB format and a
description of the system function may be found in the
operating system documentation.

r. Capital
(1) Type subroutine: Function '
(2) Purpose: Convert a byte representing a

lower case letter into a byte representing the
corresponding upper case letter.

(3) Description of parameters
(a) 'Char'is the byte representation of

a letter to be converted to upper case.
(b) If the byte input was a letter,

the byte returned will be the upper case representation ofthat letter. ....
(4) External references: NA
(5) Process description: Capital performs

an 'and' operation between the input value and 5f hex and
returns the result. No check is made to ensure the input
is in the range of the ascii letters. An upper case letter
will not be modified.

s. Lower case
(1) Type subroutine: Function
(2) Purpose: Convert an upper case letter

into the corresponding lower case letter.
(3) Description of parameters

(a)'Char' is the upper case letter to
be converted to lower case.

(b) If the character input was a
letter, the character returned will be the lower case

133



representation of that letter.
(4) External references: NA
(5) Process description: Lower case

performs an or' operation between the input value and 20h
and returns the result. No check is made to ensure the
input is in the range of the ascii letters. A lowercase
letter will not be modified. 2 '.

t. Arr to strg
(1) Type subroutine: Function
(2) Purpose: Convert an array of bytes into

a string.
(3) Description of parameters

(a) 'Addr' is the address of thefirst
byte of the array to'be converted into a string. Since the
first byte of a string contains the length of the string,
the first byte of the array passed in must identify the
number of bytes in the array.

(b) The function returns the array
unchanged.

(4) External references: NA
(5) Process description: Arr to strg

returns the byte that was passed in as a string. The array
is not modified in any way and it is assumed that the
programmer has set the first byte of the array as the
length of the array (that is, length not including the
length byte).

u. Convbyt
(1) Type subroutine: Function
(2) Purpose: Allow assignment of a variable

of type character to be assigned in to a variable of type
byte. The value is not modified.

(3) Description of parameters:
(a) A value of type character to be

converted is the input parameter.
(b) The input value is returned as a

byte.
(4) External references: NA.
(5) Process description: This function

returns the input character as a byte by moving the input
value into the ax register.

v. Two-bytes
(1) Type subroutine: Function
(2) Purpose: Convert a two byte array into

an integer.
(3) Description of parameters:

(a) The address of the array to be
converted is input to the function.

(b) The input value is returned as an
integer.

134 • ..-.



(4) External references: NA.
(5) Process description: The address of the

array is used to move the two bytes into the AX register to
be returned.

w. Dec cnt
(1) Type subroutine: Procedure
(2) Purpose: No idea.
(3) Description of parameters:

(a)
(b)
(c)

(4) External references: NA.
(5) Process description:

x. Current dsk
(1) Type subroutine: Procedure
(2) Purpose: Identify the currently

selected disk drive.
(3) Description of parameters: A byte is

returned representing the currently selected disk
drive(O=A, 1=B, etc.).

(4) External references: Int 21h.
(5) Process description: This procedure

only calls the System Kernel function that performs this
service. See the Programer's Utility Pack for details of
the function's operation.

y. Get strg 4
(1) Type subroutine: Procedure
(2) Purpose: Allow a user to enter a string

of characters into the keyboard.
(3) Description of parameters: 'Addr' is

the address of a memory buffer. The byte addressed must
contain the maximum number of bytes that may be entered
into the buffer. The second byte will be set to the actual
number of bytes entered from the keyboard. Characters -. -
entered from the keyboard will be sequentially stored after
the second byte of the buffer until the maximum length is
reached or carriage is entered.

(4) External references: Int 21h.
(5) Process description: This procedure

calls the System Kernel function that performs this
service. See the Programer's Utility Pack for details of
the function's operation.

z. Prnt buf
(1) Type subroutine: Procedure
(2) Purpose: Display one or more

consecutive characters in memory on the console.
(3) Description of parameters: 'Addr' is

the address of the memory buffer containing the data to be
displayed.

135

7,rr



~-:-...

(4) External references: Int 21h.
(5) Process description: This procedure

.4 calls the System Kernel function that will display one byte
and loops until all bytes are displayed. The first byte of
the buffer must contain the length number of bytes to be
displayed. 0..

U. PACKAGE NAME: ASSYLIB.ASM

1. CONFIGURATION -

a. Language: JANUS/ASSEMBLER
b. Assembler Version: 1.4.6
c. Linker Version: 1.4.7
d. Target Hardware: Intel 86/12A SBC
e. Operating system:

(1) Name: Cpm-86
(2) Version: 1.1 .
(3) Release: 1.4

2. Comments

a. As stated in the Janus/Ada Users Man, the
discrete type input parameters for Janus/assembly modules
are stored on the stack with the last parameter closest to
the top. Output and other type paramaters are addressed by -
the stack. ..

b. Also stated in the Janus/Ada Users Man, the
discrete value to be returned from Janus/assembly functions
must be placed in the al register just before returning.
Word values are returned in the ax register, and the
address of non-discrete types returned is returned in the
AX register.

c. The interrupts and function calls used are
standard to the operating system. Descriptions may be
found in the documentation supplied by Zenith Data Systems
for CPM-86.

d. Many of the functions and procedures in this

package perform the same function as a supplied Janus/Ada
tool. In order to access the Janus supplied modules, other
modules that may not be used must be linked into the
command file. These modules were coded by the authors to
preclude inclusion of excess modules. .--

3. SUBROUTINES

a. Cksum
(1) Type subroutine: Procedure
(2) Purpose: Calculate the 'checksum' value

of a specified number of bytes.
(3) Description of parameters:

136

* * * 4 71. ' .' z

P -* *. ' * :- ?.4: .



, -" a. -- - - - - 4-- .w 4 N-r 4% - W L'V -&"4 " m '4 " -J

(a) 'Addr' is the address of the first
byte to be included in the checksum calculation. ...,

(b) 'Numwrds' specifies the number of
sixteen bit words to include in the checksum calculation.

(c) 'Rslt' is the result of the
calculation.

(4) External references: NA.
(5) Process description: The checksum of a

network packet is defined as being the ones complement of
the one's complement sum of all sixteen bit words. For the
purposes of computing the checksum, the checksum field is
set to zero. 'Cksum' begins the calculation at the address
specified and computes the next 'Num wrds' sequential
sixteen bit words. Checksum is used to verify accuracy of
datagram headers transmitted over networks. The headers
used in this application do have the checksum field within
the header. A detailed description of checksum computation
is contained in Stanford Research Institute, Request For
Comments number 793, p 16.

b. Wr ad
(1) Type subroutine: Procedure
(2) Purpose: Send the memory address to be

used for a block data transfer to the ETHERNET controller
board.

(3) Description of parameters:
(a) 'Ad' is the offset address of the

first byte to be used by for the data transfer. 4
(4) External references: NA.
(5) Process description: The offset address

that is input is converted to a 20 bit address needed to
perform a DMA transfer across the MULTIBUS. The address
is computed by shifting the extention byte to the left four
bits and adding it to the lower two bytes.

The three bytes of the 20 bit address are written to
the ports declared in the procedure. H ad prt and 1_adprt
are for the high and low bytes of the address, and e ad prt
is the port address to send the extended portion of the 20
bit address. Since the these addresses are hard coded, the
program would have to be modified and reassembled and
linked if the N13010 port addresses change (which is not
very likely).

c. Inprt/outprt '..-

% (1) Type subroutines: Procedure
(2) Purpose: Get/send value to/from an 10 *A

port.
(3) Description of parameters:

(a) 'Prt' is the port number the data
is to be accessed.

(b) 'Byt' is the value to be written
to or read from the port.

137
• a°- .

, -i,



"4' ...

(4) External references: NA.
(5) Process description: The assembly 'in'

and'out' instructions are used to get/send the value
through the designated port.

d. Addarr, subarr %
(1) Type subroutines: Procedure
(2) Purpose: Add/subtract two four byte

arrays.
(3) Description of parameters:

(a) 'Arrl and 'arr2' are the two
arrays to be operated on. The result is returned in
'Arrl '.

(4) External references: NA.
(5) Process description: Each of the eight

input bytes are moved into registers. The corresponding
bytes are added/subtracted as though the array represented
a long integer.

e. Arr to int
(1) Type subroutines: Function
(2) Purpose: Convert the value represented

in a two byte array into a two byte integer representation.
(3) Description of parameters:

(a) 'Arr' contains the value to be
converted.

(4) External references: NA.
(5) Process description: The input value

is not modified. The value of each byte of the input array
is moved into the output area and returned. V.

f. Ohi/olo
(1) Type subroutines: Function
(2) Purpose: Convert the high/l byte of an

integer into a byte.
(3) Description of parameters:

(a) 'Int is the integer from which the
high byte will be copied.

(4) External references: NA.
(5) Process description: Integers are

represented as two bytes. In these functions, the value of
the high/low byte of the input integer is assigned to the
AL register and returned.

g. Otstbit
(1) Type subroutine: Function
(2) Purpose: Determine if a specific bit of

an eight bit byte is set (equal to one).
(3) Description of parameters:

(a) A value of type byte to be

inspected.

138

* ..... :. - - - ..- ,- , - .- .- .-..... .-.......... . -,........... .. .. - ...



-* (b) An integer identifying the bit
number of the byte that is to be inspected. The range is
0..7.

(4) External references: NA. %

(5) Process description: To test a
particular bit of a byte and return true if set.

h. Oclrbit/osetbit
(1) Type subroutines: Function
(2) Purpose: Set or clear a specific bit of

a specific byte. Most often used to set values of control
words.

(3) Description of parameters:
(a) 'Num' is the byte in which the bit

is to be set/cleared.
(b) 'Bit' is the bit number of the bit

to be set/cleared. The range is 0..7.
(4) External references: NA.
(5) Process description: ???

i. Gt equ, lt_equ, gthan, 1_than
(1) Type subroutines: Function
(2)Purpose: Determine the logical

relationship between two four byte arrays.
(3) Description of parameters:

(a) 'Arrl' and 'Arr2' are the arrays
, ~to be compared. .'-tob o.ae. (b) Aboolean value is returned

indicating if the tested condition holds.
(4) External references: NA.
(5) Process description: ???

j. Inc arr
(1) Tye subroutines: Function

(2) Purpose:Increase the value of an array
by one as if it were an integer.

(3) Description of parameters:
(a) 'Arrl' is the array to be

incremented.
" (b) 'Int is the ???

(4) External references: NA.
(5) Process description: ???

k. Grtr of
* (1) Type subroutines: Function

(2) Purpose: Identify the integer with the
larger numerical value.

(3) Description of parameters:
(a) 'Intl' and 'Int2' are the integers

to be compared.
(b) Thelarger integer is returned as

an array of two bytes.

139

,.4
#,'. , . -. .. . . .. - . , _,. _,_ - , .-_: .. - , , . .. .. ' .... - ...- ... .. . .. -, - ..- , - .. .. : -. -.. ..- -..-.- -,-.-.



(4) External references: NA.
(5) Process description: The integers are

compared using the assembly 'cmp' instruction and the
larger value placed in the AX register for return.

1. Upper nibble
* (1) Type subroutines: Function

(2) Purpose:To return the integer valueof
the upper nibble of a specified byce.

(3) Description of parameters:
(a) 'Byt' is a byte;
(b) an integer is returned.

(4) External references: NA.
(5) Process description:

A field in the TCP/IP header is only 4 bits wide and is
contained in the upper nibble of a particular byte. This _
function shifts that byte to the right 4 bits, then returns
that value.

M. Incnxt prtad
(1) Type subroutines: Function
(2) Purpose: Advance the value of the

buffer pointing at the next TCP address to be used.
(3) Description of parameters:

(a) ' Addr' is the integer
representation of the last TCP addressed.

(b) The incremented input value is and
returned.

(4) External references: NA.
(5) Process description: The input value is

incremented and returned.

n. Prntch
(1) Type subroutines: Function
(2) Purpose: Output a value on the console.
(3) Description of parameters: NA.
(4) External references: Int 21h.
(5) Process description: A system kernel

function is called to perform the desired function. The
registers must be set prior to calling this function.

o. Prt hex
(1) Type subroutines: Function
(2) Purpose: ???Output the hexidecimal

representation of a value on the console. .
(3) Description of parameters:

(a) 'Addr' is??? the integer
representation of the last TCP addressed.

(b) 'Num' is ???
(4) External references: NA.
(5) Process description:The input value is

incremented and returned.

140

"" ."" ' " . . .... . . . . .



71'7

p. Get trns
(1) Type subroutine: Procedure
(2) Purpose: Receive one or more characters

across the RS232 connection between the Z-100's and the
concentrator. esrpi

*(3) Description of parameters .
(a) 'Addr' is the address that the

first byte of the data is to be stored into. Addresses are
represented as integers in Janus\Ada.

(b) 'Dprt' is the port data port
- address the data is to be received from.

(c) 'Amt' is the maximum number of
bytes to be received on input and is returned as the number
of bytes received.

(4) External references: NA.
(5) Process description: The data is read _-

one byte at a time until the amount count is reached.
DSR/DTR handshaking is performed before each character is
read. For a state diagram of the handshaking, see

* [Hart\YAS86 ].

q. Send trns
(1) Type subroutine: Procedure
(2) Purpose: Send one or more bytesacross

the RS232 connection between the Z-100's and the
* concentrator.

(3) Description of parameters
(a) 'Addr' is the address of the first

byte of the data to be transmitted. Addresses are
represented as integers in Janus\Ada. -

(b) 'Dprt' is the port data port
address the data is to be transmitted to.

(c) 'Amt' is the number of bytes to be
transmitted on input and is returned as the number of bytes
actually sent.

(4) External references: NA. ...

(5) Process description: The data is sent
one byte at a time until the amount count is reached.
DSR/DTR handshaking is performed before each byte is sent.
For a state diagram of the handshaking, see (Hart\Yas86].

r. Oput
(1) Type subroutine: Procedure • .,

on th conole.(2) Purpose: Display one or more characters~on the console•.--"

(3) Description of parameters
(a) 'Strg' is the string to be .. ,

displayed.
(4) External references: NA. ....

(5) Process description: The first byte of
the input string is expected to be the length of the string
to be displayed. That number of characters are displayed

N. 141 ...
: -* .. ":



to the console using the 'out' instruction to the monitor
data port address. The monitor data and status port
addresses are specified in the Z-100 hardware
documentation.

S. Onew line

(1) Type subroutine: Procedure
2) Purpose: Advance the 'next display'

position on the console to the beginning of a new line. 6

(3) Description of parameters: NA.
(4) External references: NA.
(5) Process description: The ascii

characters 'carriage return' and 'line feed' are sent to
the monitor data port using the 'out' instruction.

t. Xsum
(1) Type subroutine: Function
(2) Purpose: Perform an XOR operation on

the specified number of bytes. This is used as a primative
checksum for local network transmissions. .-. 4

(3) Description of parameters:
(a) 'Addr' is the address of the first

byte of data to be included in the checksum operation. -:.,
(b) 'Cnt' is the number of consecutive

bytes to process.
(c) The result of the multiple XOR

operations is returned.
(4) External references: NA.
(5) Process description: The address is

incremented as each byte is XOR'ed against the register
holding the return value.

u. Get data
(1) Type subroutine: Procedure
(2) Purpose: ???
(3) Description of parameters:

a (a) 'Port' is the port number to be
" ~~read. "> "

(b) 'Addr' is the address in which to
store the first byte of data.

(c) 'Len' is the number bytes received.
(4) External references: NA. . .

(5) Process description: ???

, ..,' .

142.

4.,

i" .,"#".,

r.. .- ',".." . . "- ". .'.'. % . "."- ".. ",_"._ ."(' _ t ; ',e . ,'2 2.



APPENDIX C

USER MANUAL FOR TELNET .,

SECTION 1. GENERAL

1.1 Purpose of the Users Manual.

The purpose of the Users manual for the NPS Local Area
Network TELNET is to allow students with minimal experience
in computer science to effectively use the system.

1.2 Project References.

a. Hartman, R. L. and Yasinsac, A. F., " Janus/Ada
Implementation of a Star Cluster LAN of Personal Computers
With Interface to an ETHERNET LAN Allowing Access to DDN
Resources", M. S. Thesis, Naval Postrgaduate School,
Monterey, California, June 1986.

1.3 Terms and Abbreviations. %

a. TELNET. The name for the software standard remote
login protocol.

b. LAN. Acronym for Local Area Network. . .

c. Z-100. Short name for the Zenith model 100 micro- '''p
computer.".

d. TCP. Telecommunications Protocol.
e. IP. INTERNET Protocol.

f. NPS. Naval Postgraduate School, Monterey, Ca.

1.4 Security and Privacy.

The Users Manual, programs, and files used to implement ,2g:.
the NPS TELENET process are unclassified and contain no
information covered by the Privacy Act.

14

143

4. .' ' -'. ... ' -' .'.. .' '•-'. V . -' ' -. . . . ' - . . . " • "- - - " . '- ' -. '' ./



SECTION 2. SYSTEM SUMMARY

2.1 System Application.

a.Purpose of TELNET. As stated in the SRI RFC-764, the
purposeoftheTELNET Protocol is to providea general, bi-
directional, eight-bitbyte orientedcommunicationsfacility.
Itsprimarygoal is to allow a standard methodofinterfacing
terminal devices and terminal-oriented processed to each other.

b. Capabilities of the system. ..

Telenet allows a user to act as a terminal to the
VAX 11-780, 11-750, Irisl, and Iris2 computers attached to . -
ETHERNET. To login to one of these systems a user must have " .-

an account on the desired system. When logged in, a user
has all capabilities of a directly connected terminal :,' .-
including file edit, copy, directory inquiry and
maintenance, and network access via FTP.

c. Additional features. None. N.

d. Functions of the system. TELNET will allow the
user to select a remote destination, will establish a
network connection to the desired destination and pass the
transmitted characters between the user and the remote
location. Once the system has established the connection,
the Z-100 will function as a remote terminal to the remote
host.

2.2 System operation.

In order to use TELNET, the files telenet.com (.cmd if
under CPM-86) and hosts.fil must reside on the users
auxillary storage device.

2.3 System Configuration.

TELNET was designed to operate on Zenith model 100
microcomputers connected to the NPS local area network.

2.4 System Organization.

TELNET operates as an information passing station when
logged in to a remote host. Characters entered in to the
keyboard are sent to the remote host and received bytes are
displayed on the screen.

2.5 Performance.

a. Input.

144-..-



The only user input to TELNET is the selection of
the desired destination. oe.

b. Output. -

There is no output generated from TELNET.

c. Response Time.
m 4.

Response time will vary due to three primary
reasons:

1. Function.
A request to list the directory will

generally be accomplished quicker than a request to edit a
file.

2. System usage. -" "
A ETHERNET is a broadcast network

operating at ten megabits per second. Even at this high bit
rate, the medium becomes quickly overloaded when the number
of users increases. Additionally, the local and remote
front end processors slow down significantly when use
increases. With the current configuration, it is suggested
that a maximum or four Zenith users operate under TELNET/FTP
concurrently.

3. Error occurrence.

User caused error such as misspelling a
password or system error caused by transmission mediumJ
malfunction will be corrected by the system. However,
response time may be degraded.

d. Limitations.

NPS TELNET can not be used to log in to a computer
outside the NPS LAN. ARPANET access may be achieved by
utilizing NPS TELNET to log in to a computer with ARPANET
access and utilizing TELNET on that system to access
ARPANET.

% 
'p

2.6 Data Base.

The only file used by TELNET is the file 'HOSTS.FIL'.This file contains the name and INTERNET address of remote

hosts connected to the NPS LAN. The hosts file is a text
file that is maintained by programmers of the Aegis project
and is write protected. .-.

... °

145

-7 .
4°,°.•o d



2.7 General Description of Inputs, Processing, and Outputs.

2.7.1 Inputs.

a. User input.

The only user input to TELNET is the
selection of the desired remote host. Once the user is
logged in to a remote host, the console input is considered
input to the operating system of the remote computer.
Control right bracket may be entered by the user as a signal
to TELNET to terminate the process.

b. File input.

The file 'HOSTS.FIL' contains the name and
INTERNET address of the computers directly accessable from
the NPS LAN.

2.7.2 Output.

a. Console output.

1. The available destinations are displayed
when a user initiates TELNET. The name of the desired
destination is the important element to the TELNET user.
The address is displayed for system maintenance purposes.

2. Data received from the remote computer is
considered to be information from the remote host operating
system to the user and is displayed on the console.

b. Network connection.

Every keystroke by the user is transmitted
individually to the remote host.

2.7.3 Process.

TELNET initiates a network connection with the selected
remote host and then acts as an information passer between
the micro-computer user and the remote host.

146
p -r



'.-. ,°

ATTACHMENT 1 TO APPENDIX C

TELNET RUN SHEET

A. Getting started.

TELNET is programmed to operate on the Zenith model 100
attached to the cluster of micro-computers in the NPS micro-
computer lab. All computers in the lab should have the
files 'TELNET.COM' ('TELNET.CMD' if under CPM 86) and
'HOSTS.FIL' needed to utilize TELNET resident on the Z-100
hard disk. If under MSDOS the files will be in directory
'LOCAL.NET'.

To use TELNET, an MSDOS user must enter the directory
'LOCAL.NET'. To initiate TELNET the user will enter
'TELNET<cr>'. The first message displayed to the console by
TELNET will be 'ENTERING THE TELNET PROCESS.'. The user
will then be prompted to select the destination. Once the
destination is selected, the first user of the system may
experience a short delay of up to one minute while the Z-100
transmits the control program to the concentrator. No
action is required by the user until another message is
displayed to the screen. From this point, the user only
need respond to messages displayed on the screen and to the
operating system of the remote host.

B. SELECTING A DESTINATION. b re

TELNET will display a list of possible destinations for
an TELNET connection. Selecting the desired destination is
accomplished by entering the number corresponding to thedesired system name followed by a carriage return. "

The destinations displayed include the recognized
INTERNET name and address of computers connected to the NPS
LAN. The user may select any computer on the list.
However, TELNET will not allow remote login unless the user
has an account on the remote computer. If a user is not
sure which computer he may connect to, he should contact an
instructor or the computer science department technical
representative responsible for system accounts.

C. SELECTING AN OPTION.

TELNET will prompt the user to enter an option and will
display a list of valid options. The option list and
further messages are self explanatory. Selection is
effected by entering the number corresponding to the desired
option followed by carriage return.

147

.4 -41

' ' £ , ,•.*4* '.. -... ;" .". , ". ..". .". .."".. ." " " • • " '- -"• " " " " " " I""' '"" "



i.-..

D. WHEN TROUBLE OCCURS.

TELNET is designed to be totally robust. If a user
desires to terminate the system abnormally, enter control
right bracket (A]) or the prompted character for
termination. If this does not work, the user may terminate
the process at any time without destroying files or causing
system damage by utilizing control reset. Some specific
problems and response descriptions follow.

f . Excessive wait occurring. The NPS LAN is designed
for a small number of users and will backup quickly as the
number of users rise. Terminating while waiting can usually
be accomplished by ehtering A] (control right bracket). If
this is not successful, enter control reset. Terminating r --
the system abnormally in this fashion may cause a longer
than normal wait required to reenter the system.

2. Keyboard does not accept characters. If the
keyboard is 'frozen' a short wait may allow the system to
recover. If this is not effective, the only recourse is
control reset.

3. System will not accept a file name. If the system
will not accept a filename, refer to the messages produced
and documentation for the operating system in use as to
proper filename format.

.148

o-J-.:T:

• d- .

* -.°

.............................................................................. "



APPENDIX D

USER MANUAL FOR FTP

SECTION 1. GENERAL

1.1 Purpose of the Users Manual.

The purpose of the Users manual for the NPS Local Area
Network file transfer process is to allow students with
minimal experience in computer science to effectively use
the system.

1.2 Project References.

a. Hartman, R. L. and Yasinsac, A. F., Janus/Ada
Implementation of a Star Cluster LAN of Personal Computers

* With Interface to an ETHERNET LAN Allowing Access to DDN
a. Resources", M. S. Thesis, Naval Postgraduate School,

Monterey, California, June 1986. . -

'a 1.3 Terms and Abbreviations.

a. FTP. The acronym for the software standard File
Transfer Process.

* b. LAN. Acronym for Local Area Network.

c. Z-100. Short name for the Zenith model 100 micro-
computer.

d. TCP. Telecommunications Protocol.

e. IP. INTERNET Protocol.

f. NPS. Naval Postgraduate School, Monterey, Ca.

1.4 Security and Privacy.

the The Users Manual, programs, and files used to implement

the FTP process are unclassified and contain no information
covered by the Privacy Act.

149

2a:a.. 'a



SECTION 2. SYSTEM SUMMARY

2.1 System Application.

a. Purpose of FTP.

FTP is a well documented software protocol for
transfering information between computers within a network.The specifications for FTP are contained in the INTERNET
Protocol Transition Workbook and Stanford Research
Institute Request for Comments number 765 dated June, 1980.

FTP is used to effect file transfer and related
operations between computers on the NPS local area network.
The NPS local area network is not directly connected to any
external network such as ARPANET, so file transfer beyond
the local network can only be accomplished by logging in to
a computer on the local network that has external access, in
this case the VAX 11-780 operating under UNIX. Once
logged in the user may utilize the version of FTP
implemented under UNIX to access computers on ARPANET and
other networks.

The FTP implementation for this thesis did not require
all the features described in the FTP documentation. The
goal here is to allow only active data transfers to remote
sites, meaning no computer can initiate a data transfer to a
Z-100. This eliminates the need for an FTP server process
to handle incoming requests to a Z-100. Additionally,. the
mail passing facilities of FTP were not programmed. A user
of this FTP system may request transfer of a file to or from
the remote computer, list the directory on the remote
computer, change the working directory on the remote
computer, ask for help, or terminate the process. The
specific FTPcommands, replies, and parameters that are
included in this implementation are listed in the Program
Maintenance Manual [Appendix ?).

%A 'A

b. Capabilities of the system.

FTP is a general process for transferring files
across data networks. In the NPS LAN its capabilities are
limited to transfer of files only between computers
operating under TCP/IP attached to ETHERNET. -.

c. Additional features. None.

d. Functions of the system.

FTP allows a user to copy, send, and delete files
from any directory he has access to on a remote host
computer.

150



V%.- ". .
"

2.2 System operation.

In order to use FTP, the files ftp.com (.cmd if under
CPM-86) and hosts.fil must reside on the users auxillary
storage device. .4 .'-4.

2.3 System Configuration.

FTP was designed to operate on Zenith model 100 micro-
computers connected to the NPS local area network.

2.4 System Organization.

FTP operates as* a dialogue between the FTP process on
the user's micro-computer and an FTP process on the remote 7-

computer. When the user selects an option, including
starting FTP, FTP will generate and send an FTP command to
the remote computer. The remote computer will respond with
replys that identify the state of the remote FTP process.

2.5 Performance.

a. Input.

FTP prompts the user for information including his
remote user name, password, account number if required, and ''"F
request. A local file to be transmitted may also be
considered input to FTP. Input received from the network
connection includes data, FTP replys, and coordinating
information from the communication front end processor
(concentrator).

b. Output. . ...

The same type of information that is received as
input is also output of FTP.

C. Response Time.

Response time will vary due to three primary
reasons: .

• ~~*. -"

,, 1. Function.

A request to change the working
directory will generally be accomplished quicker than
transfer of a large file. .-.-..

2. System usage.

ETHERNET is a broadcast network

151

• -:" •1"



Vr7 W*p -i i"'7 .V

operating at ten megabits per second. Even at this high bit
rate, the medium becomes quickly overloaded when the number
of users increases. Additionally, the local and remote
front end processors slow down significantly when use
increases. With the current configuration, it is suggested
that a maximum or four Zenith users operate under FTP
concurrently.

3. Error occurrence.

User caused error such as misspelling a
password or system error caused by transmission medium
malfunction will be corrected by the system. However,
response time will be severely diminished.

d. Limitations.

FTP can not be used to transfer a file to another
micro-computer on the cluster. Text or command files may be
transferred.

2.6 Data Base.

The only file used by FTP is the file 'HOSTS.FIL'.
This file contains the name and INTERNET address of remotehosts connected to the NPS LAN. The hosts file is a text

file that is write protected.

2.7 General Description of Inputs, Processing, and Outputs.

2.7.1 Inputs.

a. User input.

1. Username.

This is the user name that identifies
the account to be connected to on the remote computer.

2. Password.

Password is the password that must be
entered in order to connect to the account identified by
'username'.

3. Filename.

a) Local.

The local file name must be a valid
file name under CPM or MSDOS. Improperly formated file
names are not accepted. If the filename is for a file to be

152 ....

. '.~ ',

• ~~~~~........... .. , ............ ....... ...--........--. °•.
" , I. " I . " . . . . . . . .l

" I , I . " l l I. .
l

I . . I I i



_. . -w' 7 . . - . r y. - . r W' e r .",' w " 4 ' y' '"""I- M "ll .J ,M P ,. ''l .. . J" . -" 2. . d. P"

.'71 .

sent, the file must exist on the device specified in the
file name.

b) Remote.

S The remote file name is a string of
not more than eighty characters. If the file name entered
is not acceptable or does not exist in the case of getting a
file, FTP will so notify the user.

4. Option.

The option selected identifies the type
of request the user desires. The possible options are
displayed on the scr'een and the user selects the letter of
the desired option.

b. File data.

Text or command files may be transferred.

c. Network connection.

1. FTP replies.

These repliesare textural data that
provide information to the user. These replies are
displayed on the user's console.

2. File data.

4. Text or command files may be received.
2.7.2 Output.

a. Console output.

1. FTP replies.

FTP replies received fromthe network
connection are displayed on the console.

2. Prompts for option, user name, password,

and file name are displayed on the console.

b. Network connection.

FTP commands triggered by a user specified
option or by an FTP reply are send to the network
connection.

c. File data.

153

II 4



Data received from the network is stored into

the file specified by the user.

2.7.3 Process.

The process maintains the dialogue with the FTP
processon the remote computer by responding to replies with
commands. The appropriate command is selected by following
the documented FTP protocol and prompting the user when
information is needed.

., 
.,

o'o'%

154

<<-4

'pe:.

* '.?



ATTACHMENT 1 TO APPENDIX D

FTP RUN SHEET :

A. Getting started.

FTP is programmed to operate on the Zenith model 100
attached to the cluster of micro-computers in the NPS micro-
computer lab. All computers in the lab should have the
files 'FTP.COM' ('FTP.CMD' if under CPM 86) and 'HOSTS.FIL'
needed to utilize FTP resident on the Z-100 hard disk. If
under MSDOS the files will be in directory 'LOCAL.NET'.

To use FTP, an MSDOS user must enter the directory

'LOCAL.NET'. To initiate FTP the user will enter 'FTP<cr>'. -
The first message displayed to the console by FTP will be
'ENTERING THE FTP PROCESS.'. The user will then be prompted
to select the destination. Once the destination is
selected, the first user of the system may experience a
short delay of up to one minute while the Z-100 transmits
the control program to the concentrator. No action is
required by the user until another message is displayed to
the screen. From this point, the user only need respond to
messages displayed on the screen.

B. SELECTING A DESTINATION.

FTP will display a list of possible destinations for an
FTP connection. Selecting the desired destination. is e
accomplished by entering the letter corresponding to thedesired system name followed by a carriage return.

The destinations displayed include the recognized
INTERNET name and address of computers connected to the NPS
LAN. The user may select any computer on the list.
However, FTP will not allow transfer of files unless the
user has an account on the remote computer. If a user is
not sure which computer he may connect to, he should contact
an instructor or the computer science department technical
representative responsible for system accounts.

C. SELECTING AN OPTION.

FTP will prompt the user to enter an option and will
display a list of valid options. The option list and VAN
further messages are self explanatory. Selection is
effected by entering the letter corresponding to the desired
option followed by carriage return.

155

-.

W% 4, • "," ,,+,,,, . .. , ,._. ,, ,,, ,, .,.~**~ .. .. .,,. ,,**... *,.. , ,. ,,+. . . .. ** -... .. .. , .. *.+.., . .,,



D. WHEN TROUBLE OCCURS.

FTP is designed to be totally robust. If a user
desires to terminate the system abnormally, enter control
right bracket (A]) or the prompted character for
termination. If this does not work, the user may terminate
the process at any time without destroying files or causing
system damage by utilizing control reset. Some specific
problems and response descriptions follow.

1. Excessive wait occurring. The NPS LAN is designed
for a small number of users and will backup quickly as the
number of users rise. Terminating while waiting can usually
be accomplished by entering A] (control right bracket). If
this is not successful, enter control reset. Terminating
the system abnormally in this fashion may cause a longer
than normal wait required to reenter the system.

2. Keyboard does not accept characters. The system
is designed to allow a user to enter data only whenprompted. If the keyboard is frozen when a user prompt

appears on the screen, the only recourse is control reset.
At other times, a screen requesting the user to wait may
appear for a substantial period. See the previous
paragraph.

3. System will not accept a file name. Local
filenames entered by the user will be parsed by the system

to ensure proper format. If the system will not accept a
filename, refer to the messages produced and documentation
for the operating system in use as to proper filename ...

format.

'-t

1-156 "..":



APPENDIXE

USER MANUAL FOR LOCAL

SECTION 1. GENERAL

1.1 Purpose of the User's Manual.

The purpose of the User's Manual for the NPS Local Area
Network Local connection process is to allow students- with .
minimal experience~in computer science to effectively use
the system.

1.2 Project References.

a. Hartman, R. L. and Yasinsac, A. F. "Janus/Ada
Implementation of a Star Cluster LAN of Personal Computers
With Interface to an ETHERNET LAN Allowing Access to DDN
Resources" H11 . S. Thesis, Naval Postgraduate School,

-~ Monterey, California, June 1986.

1.3 Terms and Abbreviations.

a. Local. The command f il1e used to connect two or more
terminals together.

b. Group. When two or more terminals are connected ~
together under the 'local' process, those terminals with a
common 'link' in the concentrator are considered in a group.
The group defines the destinations of broadcast packets in a
local connection. A terminal is connected to a particular
group when it initially connects to another terminal,
becomming connected to the other terminal's group. More
than one group can exist at once. Two or more terminals
constitute a group.

C. Link. Terminals are linked together in groups using -
pointers implemented in the concentrator program.

d. LAN. Local Area Network.

1.4 Security and Privacy. 4

The Users Manual, programs, and files used to implement
the Local process are unclassified and contain no
information covered by the Privacy Act.

157



SECTION 2. SYSTEM SUMMARY I

2.1 System Application.

a. Purpose of Local.

Local is used to transfer files, send messages and

print files amoung the different terminals in the LAN.

b. Capabilities of the system.
The local communication network system can be

thought of as potentially connecting, simultaneously, all
terminals in the LAN. Each remote terminal- has its own
connecting port in each local terminal. The remote
terminals may be simultaneously getting files, sending
files, exchanging messages or using the printer, all from
the same terminal. The system has been designed for ease of
use. For instance, the command 171 can be entered any time
text is not being entered, to find out what commands are
available. Multiple files can be transferred with a single
text input.

c. Additional features.

Directory listings can be obtained from remote
terminals by use of the 'directory' command. User names are

W passed upon command. Network status is available.
Terminals can be used as mailboxes for other terminal users. .

Helpful information on using the system is readily available
to the user.

.5. 2.2 System operation. 
-.

Getting started - The system is started by executing
the command file 'local'. Successsful boot-up and initial

S communication with the concentrator is observed by your
terminal number being displayed. Continued boot-up will
display the message 'Login:'. At this time you should enter
your name. If another terminal connects to yours before you
enter your name, the connection will be established but you
will not be logged in under your name. The automatic login
feature allows a single user to connect to multiple
terminals without logging in at each one. 5.

Once logged in, a destination terminal should be
selected. Enter the terminal number for any of the other
terminals. If the destination terminal you pick is not
booted up in 'local', your terminal will be set to 'listen',
which listens for another terminal to connect with it. The
other terminal can and must log into yours to establish the
connection. once established, full use to the system is

158

J.I



available. The following is a summary of what can be
performed:

Send files
Get files
Send messages ...

Receive messages
Get directory listings
Get status
Print files

Many of the commands can be executed with all the other
terminals at once. For instance, to send a file to all
terminals simultaneously, the 'all>' prompt needs to be on
the screen. If Isdnd files' is selected and one or more
file names entered, the files (assuming the files are
available on disk) will be broadcast to all terminals in the
same connection or 'group' connection (more about 'groups'
later). A message, likewise, can be sent to 'all', as well
as getting a directory listing from 'all'. The prompt is
the terminal number that will receive an outgoiiig packet (if
one is sent) when a command is entered. The prompt:

15>

for instance, will direct any transmitted data, as a result
of a command, to terminal number 15. If terminal 15,
however, is not executing 'local', then the data goes
nowhere. j

states ( waiting for a local connection) enter 'n' for the

netstat command. All command entries, by the way, are by a
single keystroke. When the netstat information appearson
your screen, all terminal numbers will be listed along with
their state. The PCB state is the one you are concerned
about.

To obtain a summary of all the available commands use
the command information. This command opens the file
'info.txt' and presents it to you. Here is a summary of
that file.

all - used to broadcast transmissions to the 'group'.

0 bell ON/OFF - when a message arrives to your terminal
the bell will either sound or not, depending on this I
setting. The default setting is OFF.

Vchange group - once established in a 'group', to k
change to a different group without 'quitting', use this
command followed by a terminal number in the other group.

159

tSp



directory - to obtain a directory listing on one or
more other computers use this command followed by the
listing desired. ie:

[drive:] <filename I wildcard> . <ext I wildcard>, 4-

When entering the filenames you are in 'enter text' mode
which means to terminate use a cntl-Z. To abort the command
enter cntl-Q and to review what has been entered use cntl-R.

get - to get files use this command followed by the
file(s) you want to get. You are in 'enter text' mode after
issuing the command so the same rules apply as above. The
file(s) will be stored on the current logged disk.

information - this command displays a text file called
'info.txt' to you describing each command, one at a time.

list - a list of all the terminals which have
communicated with yours is displayed. This list will be
only those in the 'group' connection if a 'whose's there?'
command is issued prior to 'list'.

print - used to print out one or more text files.
After issuing the command the 'enter text' mode is again
used to enter the file name(s).

send - to send file(s) to another terminal. 'Enter
text' mode is used to enter the file name(s).

talk - to send a message to another terminal. 'Enter
text' mode is used to enter the message. If more than 512
characters are entered then one message is sent and another
is automatically started so that continuous entries can be
made. This command can also be used to directly interact
with the printer rather than creating a file to print.

Verbose - to turn on and off certain screen output when

files are being transferred.

2.3 System Configuration.

Local was designed to operate on the Zenith model 100
microcomputers connected to the NPS Aegis local area
network.

2.4 System Organization.

Local can have multiple connections existing with other
computers simultaneously. Each connection executes
independently of the others unless broadcast packets are
used to send duplicate packets to all terminals in a
'group'. The system continuously monitors input from the

160
-4%'J

' "- '%,'4



keyboard and the concentrator while making repeated attempts
to send any outgoing packets to the concentrator. Very
rarely does the system wait in a non-executing loop waiting
for an input to trigger the next execution.

2.5 Performance.

All communication is via RS232 9600 baud connections
which means large files will take a minimum of 1.2K bytes
per second to transfer packets to the concentrator and the
same amount of time from the concentrator to another
terminal or .6K per second. A 64K byte file will,
therefore, take more than 100 seconds. If the system is
performing multiple transfers simultaneously, obviously a
slower performance time will be experienced. Approximately
20% overhead exists in going through the concentrator I--_
processor.

2.6 Data Base.

The only file used by Local is info.txt which is a text
file available to the user for helpful information in using
the system. The file can be accessed while executing
'local'.

2.7 General Description of Inputs, Processing, and Outputs.

2.7.1 Inputs.
a. User inputs.

1. Login name. At the present time the user
name is not used to protect access, only informational to
who's on the system. The user's name is set to upper case
upon entry.

2. Commands. The commands available to the
user are entered by a single keystroke. The first character
of the command is needed for execution of the command (upper
or lower case).

3. Text input. After certain commands text is
input from the user. All text input modes are executed and
terminated the same. If, for instance, a message is to be
sent, after entering the command 'talk', the text is input
until the message is complete. At completion of the text .

input, control-Z is used to send the message. To review the
message control-R is used. To exit the text input mode _

without sending the message control-Q is used. Control-H or
Delete is used to delete the last character. Full screen _

editing is available, therefore, trying to delete characters
up one line will not appear on the screen, however, a review
of the text input will show any deletions. File names are
entered as text. Commas must be used between file names for -
separation. Wildcards (?,*) may be used in file names.

161



2.7.2 Output.
a. Messages. When messages arrive at a terminal

they are displayed on the screen unless the user is in a L -
text input mode, then they are saved until out of the text
mode.

b. File transfers. When filei are transferred the
name of each file is presented on the screen at the
beginning of transfer unless 'verbose' is OFF. In addition,
each 512 bytes of the file sent or received is indicated by
either a 'G'/'B' when receiving or '.' when sending. The
'G'/'B' indicates whether the 512 bytes was received with a
good checksum or bad checksum, respectively.

2.7.3 Process. The process manages the connections,
ensuring against multiple commands over the same connection. """J

2.8 When trouble occurs.

Most of the problems will occur when a terminal does
not know what state it is in. For instance, if a connection
is established then the user enters AC at any time, the
local program is terminated, however, the concentrator is
unaware of the termination. Subsequent execution of
'local' may not boot-up properly. In this case, resetting
the terminal (control reset) should re-initialize the
terminal's state in the concentrator. If it still doesn't
boot-up, the concentrator may have malfunctioned. Trying a
different terminal would better confitm the latter.

The printer can be connected to as another terminal or by
use of the 'print' command. The print command is
recommended since the printer will be freed up at
termination of printing, where as, making a connection to it
will prevent others from using the printer until the
connection is broken. The printer is normally terminal
number 0 and should always be in either listen or local
state (when using netstat).

It is possible, but rare, that all the memory blocks in
W.." either the concentrator or on a terminal, are used. The

latter could be due to a packet not being received by a
destination terminal while packets continue to be made and
queued behind the first. In this case the terminal not
accepting any more packets must be found and reinitialized.

Error messages will appear on the screen when a
checksum field is not correct upon receipt of a packet. If
a terminal to terminal file transfer is taking place,
retransmissions will resolve the problem automatically.
Checksum errors are very rare. During testing, for
instance, 40,000 packets were sent without error. The key .
to this success are the send trns and get trns routines

162

de



which ensure no conflict occurs when bi-directional
transmissions occur. A possible cause of error is if a
control code is sent just prior to transmitting a packet.

In this case the control code could be mixed in with aIIpacket. Any problems in using the system is directed to
'problems', a file containing observed problems (or .compliments) that may help on any revision of the program.
This file can be created on any terminal.

4-

9.0

9.163



APPENDIX F

LISTING OF CONCENTRATOR PROGRAMS

PACKAE glballis

ter :CONSTANT BYTE BYTE(16#9D#);

code cis :CONSTANT BYTE :=BYTE(16#C3#); --C
code abort :CONSTANT BYTE :=BYTE(16#Cl#); --A
code-status :CONSTANT BYTE BYTE(l6#D3#); --S
code_-Arlog : CONSTANT BYTE BYTE(16#D2#); --R
codePriog :CONSTANT BYTE :=BYTE(16#DO#); --P
codeFtp : CONSTANT BYTE BYTE(16#C6#); --F
codeLoc :CONSTANT BYTE :=BYTE(16#CC#); --L

r..code lstn :CONSTANT BYTE :=BYTE(16#CF#); --0
_code reqPrt : CONSTANT BYTE BYTE(16#FO#); --p

code quit :CONSTANT BYTE :=BYTE(16#Dl#);

--interrupt control codes for ni3OlO:
disable :CONSTANT BYTE :=BYTE(l6#OO#);
stat blk :CONSTANT BYTE :=BYTE(16#02#);
rcv_pck :CONSTANT BYTE :=BYTE(16#04#);
tx -dma -dn : CONSTANT BYTE BYTE(16#06#);
rcv dma dn : CONSTANT BYTE :=BYTE(16#07#);

--ni3OlO port addresses:
cmd reg :CONSTANT INTEGER :=16#OObO#;--note:if changing
stat -reg : CONSTANT INTEGER :=16#O0bl#;--port addrs also
tx-reg : CONSTANT INTEGER :=16#00b2#;--change bus addr
ntrptreg : CONSTANT INTEGER :=16#00b5#;--regs in assembly
able_reg : CONSTANT INTEGER :=16#00b8#;--routine 1wr ad'
h cnt_reg :CONSTANT INTEGER :=16#O0bc#;
1_cnt_reg :CONSTANT INTEGER :=16#O0bd#;

--ni3OlO control codes:
interface : CONSTANT BYTE :=BYTE(16#Ol#);
internal : CONSTANT BYTE :=BYTE(l6#02#) ;
clear : CONSTANT BYTE :=BYTE(l6#03#);
go-off : CONSTANT BYTE :=BYTE(16#08#);
go_on : CONSTANT BYTE :=BYTE(16#09#);
diagnostic : CONSTANT BYTE BYTE(16#Oa#);
rcv stat : CONSTANT BYTE :=BYTE(16#18#);
ld Ex dat : CONSTANT BYTE :=BYTE(16#28#);

toold-snd! : CONSTANT BYTE :=BYTE(16#29#);

reset : CONSTANT BYTE :=BYTE(l6#3f#);

164

- .* . ..



prom -mode : CONSTANT BYTE BYTE(16#04#);
cl insert-mode :CONSTANT BYTE :=BYTE(16#0e#); k

--iSBC86/12A port addresses
monitor data prt: CONSTANT INTEGER :=(16#D8#);
monitor-stat prt: CONSTANT INTEGER (16#DA#);

max ad :CONSTANT INTEGER :=11;
max tcb :CONSTANT INTEGER :=29;
max mem bik :CONSTANT INTEGER 30;
numprts : CONSTANT INTEGER :=23;
pcb head : CONSTANT INTEGER :=numprts + 1;
threshold : CONSTANT INTEGER :=1000;
min _size : CONSTANT INTEGER 60;
bik size : CONSTANT INTEGER :=576;
max-flag byt : CONSTANT INTEGER :=numprts / 8;

--ASM machine instructions:
cli :CONSTANT BYTE :=BYTE(16#FA#);--clear ints
sti :CONSTANT BYTE BYTE(16#FB#);--start ints
pushF : CONSTANT BYTE :=BYTE(16#9C#);--push flags
popF :CONSTANT BYTE :=BYTE(16#9D#);--pop flags

--ASCII codes:
asciiA : CONSTANT BYTE :=BYTE(16#41#);
asciiO : CONSTANT BYTE :=BYTE(16#4F#);
asciiS : CONSTANT BYTE :=BYTE(16#53#);
asciiI : CONSTANT BYTE :=BYTE(16#49#);
asciiE : CONSTANT BYTE :=BYTE(16#45#);
asciiM : CONSTANT BYTE :=BYTE(16#4D#);
asciid : CONSTANT BYTE :=BYTE(16#64#);
asciir : CONSTANT BYTE :=BYTE(16#72#);
asciix : CONSTANT BYTE :=BYTE(16#78#); 4

asciiv : CONSTANT BYTE :=BYTE(16#76#);
asciiT : CONSTANT BYTE :=BYTE(16#54#);
CR : CONSTANT BYTE :=BYTE(16#OD#); .

LF : CONSTANT BYTE :=BYTE(16#OA#);
TxRdy : CONSTANT INTEGER :=0; -4

RxRdy : CONSTANT INTEGER :=1; 'S
DSR : CONSTANT INTEGER :=7;
DTR : CONSTANT BYTE :=BYTE(l6#27#);
dlr : CONSTANT BYTE :=BYTE(l6#25#) ;

--programmable interrupt controller ports and codes:
icwl prt : CONSTANT INTEGER :=16#OOCO#; --initializa
icw2_prt : CONSTANT INTEGER :=16#00C2#; --cntl word:
iCW4 prt : CONSTANT INTEGER :=16#00C2#; --icw
ocw_prt : CONSTANT INTEGER :=16#00C2#; --oper cw

icwl: COSTAT BYE :=BYT(16del)

icw2 : CONSTANT BYTE :=BYTE(16#40#);

iCW4 : CONSTANT BYTE :=BYTE(16#OF#); L.~

165

2., 2.



ocw CONSTANT BYTE := BYTE(16#DF#);--mask other
sba : CONSTANT INTEGER 1; --interrupts
srf : CONSTANT INTEGER 0;

--TYPES:
TYPE Pstates IS

(cls, r_init,rlogn,f init,rftp,lstn,l_init,local,clsing);
TYPE Tstates IS

(listen, synsent, synrcv, estab, fin wait_1, fin wait_2,
close Wait, closing, last ack, time wait);

TYPE array2 IS ARRAY (1..2) OF byte;.4
TYPE array4 IS ARRAY (1.. 4) OF byte;
TYPE array6 IS ARRAY (1..6) OF byte;
TYPE array562 IS ARRAY ( ..512) OF byte;
TYPE flg array IS ARRAY (0..max flag byt) OF byte;
TYPE socket rec IS RECORD

ipad : array4;
tcpad : array2;
END RECORD;

TYPE send IS RECORD
una : array4;
nxt : array4;
wnd : array2;
wll : array4;
w12 : array4;
iss : array4;

END RECORD;
TYPE"receive IS RECORD

nxt : array4;
wnd : array4;
irs : array4;END RECORD; ..

TYPE pcb rec IS RECORD
isprint : BOOLEAN;
data prt : INTEGER;
stat prt : INTEGER;
cmd prt : INTEGER;
prtQ : INTEGER;
s_prtq : integer;
sent : BOOLEAN; -"'
Pstate : Pstates;
time wait : INTEGER;
act : BOOLEAN;
1_prtad : array2; --local port address
s_prt ad : array2; --secondary port address
sec act : BOOLEAN;--true if sec port active
loc-con : INTEGER;
buf-in : socket rec;
buf-in cnt : INTEGER;
pcb-ptr : INTEGER;
snd : flg array;
ack : flg array;

166

Ad

4.-.

~ *~'*"*...*J*



flg byt : INTEGER;"
flg_bit : INTEGER;

END RECORD;

TYPE tcb rec IS RECORD
prtnum : INTEGER; .*
Tstate : Tstates; .v;
loc sock : socket rec;
rem sock : socket-rec;
snd : send;
rcv : receive; % %
ctl : BYTE;
retrnsQ : INTEGER;
END RECORD;

TYPE ad resol rec IS-RECORD
ipad : array4;
eth ad : array6;
update : INTEGER;

end record;
TYPE ethpck IS RECORD

frm stat : array2;
frm len : INTEGER;
toethad : array6;
fm eth ad : array6;
typepck : array2;

ar hrd : array2;--see RFC 826, Network
arpro : array2;--Information Center
ar len : array2;--publication for details -4
nul : BYTE;
arop : BYTE;
fm eth : array6;
fm ip : array4;
to eth : array6; A'
to-ip : array4;

END RECORD;

TYPE mem blk IS RECORD ,.
frm stat : array2;
frm len : INTEGER;
to eth ad : array6;
fm-eth-ad : array6;
typepck : array2;

ver : byte;
serv : byte;
len : array2; 3 U-

id : array2;
flag : array2;
ttl : byte;
prot : byte;
ipcksum: array2;
ip_scr array4;

167

9'.1

S-: '-- ' . : ' ' ' ," ."-$ ." ,/ -.- .""¢ ".'-' =. .'% i i' -'"" '.--'~ 
v
'""'v>.,% .,'



ipdst : array4;
scr : array2;

seq : array4; M
ack : array4;
off :byte;
ctl : byte;

bIwnd :array2;
tcpxsum: array2;
urg :array2; .

data : array5l2;
crc :array4;
spare :integer;

END RECORD;

--VARIABLES:
loc ip ad :array4;

--INTIALZEDTO Co 09 C8 04 IN init mem
mem manag tbl : ARRAY (l..max mem bik) of INTEGER;-
pcb- : ARRAY (0..pcb head) OF pcb rec;
tcb : ARRAY (0. .max-tcb) OF t'cb rec;
mem, : ARRAY (1. .max mem bik) of mem bik;
eth : ethpck;
ad tbl : ARRAY(1..max ad) of ad resol rec;
rcv wnd : array2;--how many bytes we can receive
nxtprt-ad : INTEGER;--next tcp port address to use
used bik : INTEGER;--counts blocks in use4
free bik : INTEGER;--points to free blocks of mem.
loc-eth-ad : array6;

wrd : INTEGER;--used by rcv.pkg for
start of loop : INTEGER; --memory block ptrs
end -of_loop : INTEGER;
time cnt : INTEGER;
ni3 010_ok : BOOLEAN;

ntrpt : BYTE; ".*

END globall;
with globall;
PACKAGE assylib is
use globall;

PROCEDURE wr-ad(ad :IN INTEGER);

PROCEDURE outprt(prt :IN INTEGER; byt :IN BYTE);

PROCEDURE addarr(arrl :IN OUT array4; arr2 : IN array4);

PROCEDURE subarr(arrl, arr2 :IN OUT array4);

168



PROCEDURE cksum(addr, numwrds IN INTEGER;
reslt : OUT array2);

FUNCTION arr to int(arr : IN array2) RETURN INTEGER;

PROCEDURE inprt(prt IN INTEGER; byt : OUT BYTE);

FUNCTION otstbit(num IN BYTE; bit : IN INTEGER)
RETURN BOOLEAN; *.

PROCEDURE oclrbit(num : IN OUT BYTE; bit : IN INTEGER); .

PROCEDURE osetbit(num : IN OUT BYTE; bit : IN INTEGER);

FUNCTION ohi(int IN INTEGER) RETURN BYTE;

FUNCTION olo(int IN INTEGER) RETURN BYTE;

FUNCTION gtequ(arrl, arr2 : IN array4) RETURN BOOLEAN;

FUNCTION itequ(arrl, arr2 IN array4) RETURN BOOLEAN;

FUNCTION g-than(arrl, arr2: IN array4) RETURN BOOLEAN;

FUNCTION 1_than(arrl, arr2 IN array4) RETURN BLN.
BOOLEAN;

PROCEDURE incarr(arrl : IN array4; int : IN INTEGER;
arr2 : OUT array4);

FUNCTION grtrof(intl, int2 : IN INTEGER) RETURN
INTEGER;

FUNCTION upper nibble(byt IN BYTE) RETURN INTEGER;

FUNCTION incnxt_prt_ad(addr : IN INTEGER) RETURN
INTEGER;

PROCEDURE get data(prt, addr IN INTEGER;
len : OUT INTEGER);

PROCEDURE prt_hex(addr, num : IN INTEGER);

PROCEDURE send trns(addr, Data_prt : IN INTEGER;
amt : IN OUT INTEGER); ".

PROCEDURE get_trns(addr, Data prt: IN INTEGER;
amt : IN OUT INTEGER);

PROCEDURE oput(strg IN STRING);

PROCEDURE onew line; -

FUNCTION xsum(addr, cnt : IN INTEGER) RETURN BYTE;

~~~169 ;.
-. , -.

.Ji

END assylib;

PACKAGE ASSEMBLY assylib;
jmp init
;--asm package must jump code not intended as initialization

PROC cksum;
;--the checksum field is the 16 bit one's complement of the
;--one's complement sum of all 16 bit words; for purposes
;--of computing the ckecksum, the ckecksum field is zero,
;--ref RFC 793 pgl6,sep8l

POP bx ;return address
POP di ;resultant array address
POP cx ;# of words to cksum"
POP si ;starting addr
PUSH si ;restore stack
PUSH cx
PUSH di
PUSH bx

MOV dx,0 ;zero total
CLC

again: MOV al,[si] ,
INC si
MOV ah,[si]
ADC dx,ax ;add to total
INC si
LOOP again
NOT dx ;1's complement of total
MOV [di],dl ;put result in array
INC di -.'
MOV [di],dh
RET

END PROC cksum;

PROC wr ad;
;--tested ok on 17 feb 86 p.-.

;--this procdure writes the 20 bit address of the item whos
;--offset is passed in as a parameter to the N13010 bus
;--address registers

e ad prt EQU OB9h ;--if N13010 port addrs
h-ad-prt EQU OBAh ;--are changed, change
lad prt EQU OBBh ;--these as well

POP di ;--return address
POP ax ;--address offset of memory block
PUSH di ;--put return address back
MOV bx,ds
MOV dx,bx

170
-- p

-p- "-

lk* R . . .7 k.-. M ~ '% w-- .'m

MOV cl, 12
SHR dx, cl
MOV cl, 4
SHL bx, cl
ADD ax, bx
JNC no add
INC dx

no add: OUT 1_ad_ prt,al
MOV al, aa
OUT h_a J_prt,a1
MOV a!,dl
OUT ead_prt, al
RET

END PROC wr ad;

PROC outprt
;--tested ok on 16 feb 86
;--this procedure outputs the byte sent in parameter 2 to
;--port address in parameter 1
;--parameters are: 1. IN port address

" --- 2. IN byte to output

POP bx ;return addr
POP ax ;byte to output in al
POP dx ;port addr
PUSH bx ;put return address on the stack
OUT dx,al ;output the byte
RET

END PROC outprt;

PROC addarr;
POP ax
POP si ,'5
POP di '"

PUSH di
PUSH si
PUSH ax
MOV ch,[di]
INC di S"'

MOV cl,[di]
INC di
MOV ah,[di]
INC di2. MOV al,[di]~~~MOV dh, [si], ,

INC si
MOV dl,[si]
INC si
M NOV bh,[si]
INC si
MOV bl,I[si]
ADD bx,ax

.5. 171 5

.
.

JNC no carl
INC dx

no carl:
IIADD dx, cx

MOV [si],bl
DEC si
HOV [si],bh
DEC si

AA.[(si] dl
E N DDP R C asr r

RET

PROC subarr;
POP ax
POP si
POP di
PUSH di
PUSH si
PUSH ax
NOV ch,[di)
INC di

* OV cl,[di]
INC di
NOV ah, [di)
INC di
NOV al,[di]

f OV dhCsiJ]~
INC si
NOV dl, [si]
INC si
NOV bh,[si]

AINC si
MOV bl,[si]%%
SUB bx,ax

*JNC no car
DEC dx

no car:
ILSUB dx,cx

NOV [o si],bl
DEC s
MOV [si],bh
DEC si
NOV [si],dl

SDEC s
NOV [si),dh

a ~RET
END PROC subarr;

172

PROC arr to int;
;--parameters are: 1.IN 2 byte array, note: array is on
;--stack vice address return integer value of array

POP bx ;--rtn addrPOP cx ;--arr
PUSH bx

MOV al,ch
MOV ah,cl
RET

END PROC arr to int; -..

PROC ohi•
POP bx -
POP ax
PUSH bx
MOV al,ah
RET

END PROC ohi;

PROC olo;
POP bx ' , '
POP ax
PUSH bx 'A W

RET
END PROC olo;

PROC inprt;
;--tested ok on 16 feb 86
;--this procedure inputs a byte from the port address . -

;--in parameter 1
;--parameters are: 1.IN port address
-- 2.OUT byte read in from port

POP bx ;--return address N.
POP di ;--output byte address
POP dx ;--input port address
PUSH dx -. ..
PUSH di
PUSH bx
IN al,dxMOV [di] ,al
RET

END PROC inprt;

PROC otstbit;
;--this procedure checks to see if a bit specified in
;--parameter 2
;--is set in the byte passed in parameter 1
;--parameters are: 1.IN byte to test

2.IN bit to test or;-- ~RETURN: T/F.'"-
POP di ;return address
POP cx ;bit

173

.1Y

*,

,,U- 1

f "~- A.,

POP bx ;byte .
PUSh di
NOV dx, 1
AND cl, 07H ;mask numbers > 7
SHL dx,cl ;shift left until bit is found "-
AND bx, dx '.

fa6tiZ falvetstbitvMOV ax, l ;leave value for true in ax

RET%
IN? falsetstbit:

MOV ax,0 ;leave value for false in axRET""

END PROC otstbit;

PROC oclrbit;
;--this procedure resets a bit specified in parameter 2
;--for the byte passed in parameter 1
;--parameters are: l.IN byte to reset bit in

-- 2.IN bit to reset

POP di ;return address
POP cx ;bit
POP si ;address of number
PUSH si
PUSH cx
PUSh di
MOV dx,1
AND cl,07H ;mask numbers > 7
SHL dx,cl ;shift left until bit is found
MOV bl,(si]
NOT dx ;1's compliment
AND bx,dx
MOV [si],bl
RET

END PROC oclrbit;

PROC osetbit;
;--this procedure sets a bit specified in parameter 2
;--for the byte passed in parameter 1
;--parameters are: 1.IN byte to reset bit in
;-- 2.IN bit to reset

POP di ;return address
POP cx ;bit
POP si ;address of number
PUSH si
PUSH cx
PUSh di
MOV dx,1
AND cl,07H ;mask numbers > 7
SHL dx,cl ;shift left until bit is found
MOV blsi]

174

j° .J- ..

OR bx, dx
NOV [si),bl
RET

END PROC osetbit;

PROC gtequ;
POP ax ;return
POP si ;second array
POP di ;first array
PUSH ax

lagan: OV cx,2 -

laga N:OV ah,Cdi]
.1INC di

NOV al,[di]
INC di
NOV bh,[si]
INC si
NOV bl,[si]

%INC si
SUB axbx
JC falsel
JNZ truel

*LOOP lagain
truel: NOV ax,1

RET
falsel: NOV ax,O

RET
END PROC gt equ;

PROC ltequ;
POP ax ;return

'CPOP si ;second array
POP di ;first array
PUSH ax
NOV cx,2

back: NOV ah,(di]
INC di
NOV al,(di]
INC di
NOV bh,(si]
INC si
NOV bl,[si]
INC si
SUB bx,ax
JC false2
JNZ true2
LOOP back

true2: NOV ax,1
RET

false2: NOV ax,O
% RET

175

W% 5

END PROC it equ;

PROC g than; a rtr

POP si ;second array
POP di ;first array
PUSH ax
MOV cx,2

iback: MOV ah, [di]
INC di
HOV al,[di]
INC di
NOV bh, [si]
INC si
NOV bl,(si]
INC si
SUB ax,bx
JC false3
JNZ true
LOOP iback

false3: NOV ax,O
RET

true: NOV ax,1
RET

END PROC g--than;

PROC 1_than;
POP ax ;return
POP si ;second array
POP di ;first array
PUSH ax
NOV cx,2

againl: NOV ah,[di]
INC di
NOV al, [di]
INC di

I. OV bh,[si]
INC si
NOV bl,(si]
INC si
SUB bx,ax
JC false4
JNZ true3
LOOP againi

false4: NOV ax,O
RET

true3: NOV ax,1 a
RET

END PROC 1_than;

P.PROC inc arr; --(arri IN array4,
"I;--int : IN INTEGER; arr2 OUT array4)

176

POP dx ;--return addr
POP di ;--output array address
POP bx ;--int
POP si ;--input array address
PUSH si
PUSH bx
PUSH di
PUSH dx
MOV ch,[si]
INC si
MOV cl,[si]
INC si
MOV ah,[si]
INC si
MOV al,[si]
ADD ax,bx
JNC no car over
INC cx

no carover:
MOV (di],ch
INC di
MOV [di],cl
INC di
MOV [di],ah
INC di y
MOV [di],al
RET

END PROC incarr;

PROC grtr of;--function grtr of(intl,int2) return intx
POP dx ;rtn addr
POP ax ;int2

POP bx ;intl
PUSH dx
CMP bx,ax
JG intl big

... RET ;int2 bigger
intl big:

MOV ax,bx
*RET

END PROC grtr of;

PROC uppernibble; --function upper-nibble

(byt : IN byte) return byte
POP dx ;rtn addr
POP ax ;byt
PUSH dx
AND ax,0OfOH
MOV cl,4
SHR ax,cl
RET

END PROC upper nibble;

177

, .-. , . . ' % - .S~

m

47 a- -W ir 'F . -w Lv" a .N , -a a . -

PROC inc nxt prt_ad; -- function returns an integer

;--tested ok on 27 feb 86

POP di

POP ax

PUSH di
INC ax
JNZ no ovrf 1w
MOV ax,0400H

no-ovrf 1w:
RET ~g

END PROC inc nxtyprt ad;

PROC get-data;(prt :IN INTEGER; addr IN INTEGER;

len :OUT INTEGER);
thrshld EQU 100

DSR EQU 80H

rxRdy EQU 2H

POP ax ;rtn

POP si ;addr of len
POP di ;addr of storage area

POP dx ;dataport

PUSH dx

PUSH di
PUSH si

PUSH ax

MOV bx,0
MOV cx,thrshld

nextbyt:INC dx

NotRdy: IN al,dx

AND al,DSR
JZ done
DEC cx

JZ done a

IN al~dx

iz NotRdy

DEC dx .a.

IN al,dx
MOV Edi],al-
INC di
INC bx a j
CMP bx,512.a*

JZ done

MOV cx,thrshld
imp nextbyt .

done: MOV (si],bx a

RET ' *

END PROC get_data;

* ~178 ,A

PROC prntch;
MOV dl,al%%
MOV ah,02H 4

INT 224
RET

END PROC prntch;

PROC prt-hex; (addr IN INTEGER; num :IN INTEGER);
asciispace EQU 20H

POP ax
POP cx
POP si
PUSH ax

again2: MOV al,[si]
SHR al,l1
SHR al,1
SHR al,1
SHR al,1
CMP al,10
JL loweri
ADD al,31H
CALL prntch
imp nibble2

* loweri: ADD al,30H **.

CALL prntch
* ribble2:MOV al,[si]

AND al,OfH
CMP al,10
JL).ower2
ADD al,31H
CALL prntch
Jmp next

*lower2: ADD al,30H
CALL prntch

next: NOV al,asciispace
CALL prntch
INC si .. %*.

LOOP again2
END PROC prt_hex;

PROC send-trns;(addr, Data prt :IN INTEGER;

4. wit~ime QU 000;amt :IN OUT INTEGER) is

rs232_ea EQU 400
DTR EQU 27H
TxRdy EQU 1
RxRdyDSR EQU 82H -

clr EQU 25H
CLI
POP axr. ;rtn
POP di ;amt
POP dx ;Dataprt

179

POP s ;addr
PUSH si
PUSH dx
PUSH di
PUSH ax
INC dx
IN al, dx N

Y.AND al, DSR
JNZ send trnsD2
MOV al,DTR
INC dx
INC dx
OUT dx,al
DEC dx
DEC dx
IN al,dx
AND al,DSR
JNZ send trnsD ; -- too soon for DSR
MOV bx,wait time
MOV cx, [di)

* send trnsLl:
-~IN al,dx

AND al,DSR
JNZ send trnsL5
DEC bx
JZ send trnsD
imp send-trnsLl

send trnsL5:
HOP ;--this routine was inserted
IN al,dx ;--after repeated tests in which
AND al,DSR ;--an occasional timing problem
JZ send-trnsD ;--would appear

send trnsL2:
IN al,dx
AND al,DSR
JZ send-trnsD
MOV al,(si]
DEC dx
OUT dx,al
INC si
INC dx

send trnsL3:
IN al,dx ,

AND al,TxRdy
JZ send trnsL3
LOOP send trnsL2
MOV [di],cx
MOV cx,rs232_delay

send trnsL4:
NOP
LOOP send trnsL4

send trnsD:

180

MOV al, clr
INC dx
INC dx
OUT dx, al
DEC dx
DEC dx
MOV cx,wait time

send trnsDl:
4P

IN al,dx
AND al,DSR
JZ send trnsD2
LOOP send trnsDl

send trnsD2:
STI
RET

END PROC send-trns;

PROC get trns; (addr ,datayprt :IN INTEGER,
amt :IN OUT INTEGER) is

CLI
POP ax ;--rtn
POP si ;--amt

.. *

POP dx ;--dataprt
POP di ;--addr
PUSH di
PUSH dx
PUSH s
PUSH ax
MOV cx,[Si)
MOV bx,O
IN-- dx
IN al,dx
AND al,DSR
JZ getprt-dataD

'-

INC dx
INC dx
MOV al,DTR
OUT dx,al
DEC dx
DEC dx p-I
MOV ah,255

get prt dataL:
IN al,dx
AND al,RxRdy_DSR

.- :
JZ get prt -dataDi
AND al,RxRdy

*JNZ get prt dataLl
DEC ah
JNZ get_pint dataL
imp get pint-dataDi

* .

181

get prt dataLl:
DEC dx
IN al,dx
MOV [di],a.
INC di
INC bx
INC dx
NOV ah,255
LOOP getprt dataL

get-prt_dataDi:
NOV al,clr
INC dx
INC dx *

get prt dataD:
MOV [si],bx
STI
RET

END PROC get-trns;

PROC oput; (sting : IN STRING) is
monitor-data EQU Od8H
monitor-stat EQU OdaH

POP ax
POP si
PUSH ax
NOV cl,[si]
NOV ch,O
AND cx,cx4
JZ oputD

oputL2: INC si
oputLi: IN al,monitor stat

AND al,TxRdy
JZ oputLi
NOV al, [si]

JmOUT monitor data,al
LOOP oputL2

oputD: RET
END PROC oput;

PROC onew line;() is
CR E;5U OdH
LF EQU OaH

NOV bl,CR
MOV cx,2

onew lineL:
IN al,monitor stat
AND al,TxRdy
JZ onew lineL
NOV al,bf 4

OUT monitor data,al
NOV bl,LF

182 -

SW.

LOOP onew lineL
RET

END PROC onew line;

PROC xsum;(addr : IN INTEGER, cnt : IN INTEGER) is
POP ax
POP cx V.
POP si

PUSH ax
MOV al,O

xsuml: MOV bl,[si)
XOR al,bl
INC si
LOOP xsuml
RET

END PROC xsum;

init:
END assylib;
with globall;
PACKAGE lib is
use globall;

PROCEDURE oPUT(num IN INTEGER);

PROCEDURE getmemory (next: OUT INTEGER);

PROCEDURE givememory(inx: IN INTEGER);

PROCEDURE perf cmd(cmd : IN BYTE);

PROCEDURE trnpck(ad : IN INTEGER; size : IN INTEGER);

PROCEDURE resolvead(ipad : IN OUT array4;
eth ad : OUT array6; rslt : OUT BOOLEAN);

PROCEDURE get_tcbndx(arr : IN OUT array2;
tbl : OUT INTEGER; found : OUT BOOLEAN);

PROCEDURE pcbcls(prt_num: in integer);

PROCEDURE pcb_abort(prt_num : IN INTEGER);

PROCEDURE tcbcls(ndx : IN INTEGER);

PROCEDURE activate prt(prt : IN INTEGER);

PROCEDURE givestatus(port : IN INTEGER);
END lib;
PRAGMA condcomp(ON);

WITH assylib, globall;
PACKAGE BODY lib IS

183 "

4-5'', . ."" - "" "" " - "" - "- +" " " "" " "" " "" " " " '."".-"".~ "'$" " "
"

11" -s •li I

USE assylib, globall;
--last updated 7 June 86

PROCEDURE oPUT(integr : IN INTEGER) is
int : INTEGER;
num : INTEGER;
byt : BYTE;
started : BOOLEAN;

PROCEDURE prntnum(num : IN INTEGER) is
zero : CONSTANT BYTE := BYTE(16#30#);
one : CONSTANT BYTE := BYTE(16#31#);
two : CONSTANT BYTE := BYTE(16#32#);
three : CONSTANT BYTE BYTE(16#33#);
four : CONSTANT BYTE := BYTE(16#34#);
five : CONSTANT BYTE := BYTE(16#35#);
six : CONSTANT BYTE := BYTE(16#36#);
seven : CONSTANT BYTE := BYTE(16#37#);
eight : CONSTANT BYTE BYTE(16#38#); %
nine : CONSTANT BYTE := BYTE(16#39#);
question: CONSTANT BYTE := BYTE(16#3F#);

BEGIN
LOOP

inprt(monitorstatprt,byt);
EXIT WHEN otstbit(byt,TxRdy);

END LOOP;
CASE num is

WHEN 0 => outprt (monitordataprt, zero);
WHEN 1 => outprt(monitor data_prt,one); ,4*
WHEN 2 => outprt(monitor data_prt,two);

WHEN 3 => outprt(monitordataprt,three);
WHEN 4 => outprt(monitor_data_prt, four);
WHEN 5 => outprt(monitor dataprt,five);
WHEN 6 => outprt(monitor dataprt,six);
WHEN 7 => outprt(monitordataprt,seven);

WHEN 8 => outprt(monitor dataprt,eight);
WHEN 9 => outprt(monitor dataprt,nine);

WHEN others =>
outprt (monitordata _prt, question);

END CASE;
END prntnum;

BEGIN
int := integr;
started := FALSE; F"
IF int < 0 THEN

oPUT("-")
END IF; -
IF int / 10000 > 0 THEN

num := int / 10000;

184

.24

• 44

S ,%4,

prntnum(num);
int := int rem 10000;
started := TRUE;

END IF;
IF int / 1000 > 0 OR started THEN

num := int / 1000;
prntnum(num);
int := int rem 1000;
started := TRUE;

END IF;
IF int/ 100 > 0 OR started THEN

num := int / 100;
prntnum(num);
int := int rem 100;
started := TRUE; V.>

END IF;
IF int / 10 > 0 OR started THEN .

num := int / 10;
prntnum(num);
int := int rem 10;
started := TRUE;

END IF;
num := int;
prntnum(num);

END oPUT;

procedure get-memory (next: out integer) is
--AUTHOR: ALEC YASINSAC --DATE: 16 FEB 86 .-

--INPUT: 1. GLOBAL TABLE MEM MANAG TBL.

--OUTPUT: 1. THE INDEX OF THE MEM ARRAY RECORD TO BE USED.
-- 2. THE GLOBAL TABLE MEM MANAG TBL IS UPDATED.
-- 3. GLOBAL VARIABLES 'FREE BLK7' AND 'USED BLK'.
-- 4. GLOBAL VAR SND WND IS MODIFIED IF MEMORY
-- USAGE GOES ABOVE 50%.
--EXTERNAL MODULES CALLED: 1. NONE.
--DESCRIPTION: GET MEMORY WILL RETURN THE INTEGER FROM THE
-- GLOBAL VARIABLE FREE BLK. FREE BLK IS THEN SET EQUAL TO
-- MEMMANAG_TBL(FREE_ELK) WHICH POINTS TO THE NEXT AVAIL
-- BLOCK. THE GLOBAL USEDBLK IS INCREMENTED. CONTENTS OF
-- THE USED INDEX MEM MANAG TBL IS SET TO ZERO. INTS ARE
-- DISABLED AT THE BEGINNING AND ENABLED AT THE END. ""'".

--used blk is global var that counts the number of memory
% --blocks in use.

--free blk is a global var that points to next available
--memory record. .

one half meneblk : CONSTANT INTEGER := max mem blk / 2;

begin --BEGIN GETMEMORY

7: 185

~" ~-.--~ z

asm pushF; --save state of interrupts.
asm cli; -- DISABLE INTERRUPTS.
if used blk > one half mem blk then-- MEANS MEMORY IS

rcv wnd(l) byte(0) ;--HALF FULL. RCV WND = 0 STOPS A
rcvwnd(2) := byte(O) ;--REMOTE FROM SENDING. LAG TIME

end if; -- WILL OCCUR BEFORE REMOTE HOST GETS THE MSG.

if free blk > 0 then
next-:= free blk; --NEXT TO POINT TO NEXT AVAIL BLOCK.
free blk := mem manag tbl(next);

--FREE BLK TO SUBSEQUENT AVAILABEL BLOCK.
mem manag tbl(next):=O; --BLK IN USE.
used blk -= used blk + 1;

else
next := 0; --IF MEMORY IS FULL, RETURN ZERO.

end if;
asm popF; -- RESTORE STATE OF INTERRUPTS.

end get memory;

procedure give memory(inx: in integer) is
--AUTHOR: ALEC YASINSAC --DATE: 16 FEB 86
--INPUT: 1. INDEX OF MEMORY BLOCK TO BE RETURNED.
--OUTPUT: 1. UPDATED GLOBAL ARRAY 'MEM ' "
-- 2. UPDATED GLOBAL ARRAY 'MEM MANAG TBL'.
-- 3. UPDATED VARS FREE BLK AND-USED BLK.
-- 4. GLOBAL VAR SND WND IS MODIFIED IF MEMORY
-- USAGE DROPS BELOW 30%
--EXTERNAL MODULES CALLED: 1. NONE.
--DESCRIPTION: GIVE MEMORY SETS FREE BLK EQUAL TO THE INPUT
-- PARAMATER AND SETS THE MEM MANAG TBL ENTRY INDEXED BY
-- THE INPUT PARAMETER TO THE-OLD FREE BLK. THE 'USED BLK'
-- COUNTER IS DECREMENTED.

old: integer;
--used blk is a global var that counts the number of
--memory blocks in use

--free blk is a global var that points to the next
--available memory record

onethirdmemblk : CONSTANT INTEGER := maxmem blk / 3;

begin
asm pushF; --save state of interrupts
asm cli;
old := free blk;
freeblk:= inx;--SET FREEBLK TO POINT TO RETURNED BLOCK.
mem manag tbl(inx):= old;--SET MEM MANAG TBL ENTRY OF

--RETURNED BLOCK TO POINT TO THE OLD FREE BLOCK.
used blk := used blk - 1;--DECREMENT USED BLK COUNTER. ,. -,.
if used blk < one third mem blk then -- MEMORY IS

rcvwnd(l) := byte(02);--LESS THAT 1/3 FULL. RCV WND=

186

_ - r~~t4 _ r - t -qv -- r-q. °- --: . - ' - - - - -. - - -. - -. .• -, - - -. - - - -

i7.

rcv wnd(2) := byte(OO);--0020 ALLOWS REM TO SEND. LAG
end if;--TIME OCCURS BEFORE THE REMOTE HOST GETS THE MSG.
asm popF; --restore sate of interrupts

end give memory; 1.;

PROCEDURE perfcmd(cmd : IN BYTE) is
err : CONSTANT BOOLEAN FALSE;
val : BYTE;
prt : INTEGER;

BEGIN
outprt(cmdreg,cmd);
LOOP

inprt(ntrptreg,val);
EXIT WHEN otstbit(val,O);

END LOOP; - -

inprt(stat_reg,val);
IF INTEGER(val) > . THEN

ni3010 ok := err;
END IF;

END perfcmd;

PROCEDURE trn pck(ad : IN INTEGER; size : IN INTEGER) is
--author r 1 hartman
--date 15 feb 86
--input parameters address of block to transmit
-- size of block to transmit (# of bytes)
-- this procedure performs a DMA transfer of the block -.
--designated to the N13010 ethernet controller board
val • BYTE; "'V

BEGIN
IF ntrpt = disable THEN

ASM sti;
wr ad(ad);
outprt(hcntreg,ohi(size));
outprt(l_cntreg,olo(size));
outprt(able_reg,txdma-dn);

ELSE
ASM cli;
LOOP

EXIT WHEN ntrpt = rcvpck;
ASM sti;
LOOP -....
EXIT WHEN ntrpt = rcvpck;

END LOOP;
ASM cli;

END LOOP;
ntrpt := disable; .

outprt (ablereg, disable);
ASM sti;

187

Pl.j

wr ad (ad)
outprt(h_cnt_reg,ohi(size));
outprt(l _cnt reg,olo(size));
ASM cli,
ntrpt := tx dma dn;
outprt(able-regtxdmadn);
ASM sti;

END IF;
END trnpck;

PROCEDURE resolvead(ipad : IN OUT array4;
eth ad : OUT array6; rslt : OUT BOOLEAN) is

--author r 1 hartman
--date 15 feb 86
-- input parameter internet protocol address
--output parameters physical ethernet address
-- boolean indicating if the address was found
--this procedure resolves the physical addr of a destination
--Ethernet controller board by looking up the ip address
--in the table. if the physical address is not known the
--result will be false.
found CONSTANT BOOLEAN := TRUE;
ndx INTEGER;
BEGIN

ndx := 1;
rslt := NOT found;
LOOP

EXIT WHEN ndx > max ad;
IF ad tbl(ndx).update /= 0 THEN

IF--ip ad = ad tbl(ndx).ip ad THEN
eth ad := adtbl(ndx).eth ad;
rslt := found;
EXIT; .4

ELSE ndx ndx + 1;
END IF;

ELSE *.

ndx := ndx + 1;
END IF;

END LOOP;
END resolvead; .

PROCEDURE gettcbndx(arr : IN OUT array2;
index : OUT INTEGER; found : OUT BOOLEAN) is

-- author r 1 hartman ..-

--date 18 feb 86
--this procedure performs a double hashing function to find
--the tcb record in the array. note: the max tcb constant
--in global.spc must be a prime number in order to maximize
--the number of records available.

incr : INTEGER;

188

188 ...:..,

_-. %. 1-

SI -.. ~ . - **.<. ~5~ __ ____ ____ ___

• tl p....

int : INTEGER;

BEGIN

int := arr toint(arr); --change array to integer addr
incr 0; b.
index int MOD max tcb; " -
found := TRUE;
LOOP

IF tcb(index).prtnum > numprts THEN .
found := FALSE;
EXIT;

ELSE
EXIT WHEN tcb(index).loc sock.tcpad = arr;

END IF;
incr := int MOD max tcb-1;
index (index + incr) MOD max tcb;

END LOOP;
END get_tcb_ndx;

procedure pcbcls(prtnum: in integer) is
--AUTHOR: ALEC YASINSAC --DATE: FEB 1986
--INPUT: PORT NUMBER OF CONNECTION TO BE TERMINATED
--OUTPUT: 1. 'MODIFIED GLOBAL VARIABLES FROM THE PCB RECORD
-- A. PSTATE
-- B. TIME WAIT
-- C. BUF IN CNT 4

2. CNTLCHARACTERTOZ100 TO TERMINATE RLOGIN.
--DESCRIPTION: THIS PROCEDURE REINITIALIZES FIELDS IN PCB
-- TABLE TO ALLOW A NEW CONNECTION TO BE ESTABLISHED AND
-- SENDS A CONTROL CHARACTER TO THE Z-100 TO TERMINATE THE
-- APPLICATION PROGRAM ON THAT MACHINE. PRTQ AND
-- BUFOUTPTR FIELDS MUST BE RESET BY TERMINATING ROUTINE
-- AND STORED PACKETS HANDLED APPROPRIATELY.

begin
outprt(pcb(prtnum) .dataprt,code_cls); --.V
pcb(prt num).pstate := cls;
pcb(prtnum).time wait := 0;
pcb(prtnum).buf in cnt := 0;

end pcb_cls; ...

procedure pcb_abort(prtnum : in integer) IS

--DISCRIPTION: THIS PROCEDURE RETURNS ALL MEMORY LOCATIONS
-- CONTAINING DATA FOR THE PRIMARY CONNECTION OF THE PORT #"." i.-

-- TO BE ABORTED, CHANGE THE STATE TO CLOSED,INITIALIZE PCB
-- TIMEWAIT FIELD, AND SEND THE CHARACTER TO THE Z100 TO
-- TERMINATE THE CONNECTION AS APPROPRIATE.

qadd, inx: integer; V .

189 ~4i

..

"- .'_ .4 ; .%4 "jf". "'i';%$',r~i j •z. ..'.. -'-,'z/J' : .-$...'.' 'i'.-'-'- -<-." '4 : - .' ." ..'<'." -a .

. . ~rr r~g ...~. C rr 7 ..*r r W . -

found boolean;
begin

while pcb(prt num) .prtq 1=0
loop --DELETE DATA STORED FOR PORT AND RETURN MEMORY.

qadd :=mem Manag tbl(pcb(prt_num) .prtq);
give memory(pcb(prt num) .prtq);
pcb(prtnum) .prtq :=qadd;

end loop;
if pcb(prt num).sec_act then

pcb(prt num) .pstate clsing;
while pcb(prt_num).s prtq /= 0

loop--DELETE DATA ON SECONDARY CONNECTION.
qadd:=mem-manag-tbl (pcb (prt num) .s_prtq);
give-memory(pcb(prt-num).s_prtq);
pcb (prt num) .sprtq :=qadd;

end loop;
else

pcb(prt num).pstate cls;
end if;
pcb(prtnum).time wait 0;
outprt(pcb(prt num) .data~pt code cls);

end pcb_abort;

PROCEDURE tcb cls(ndx IN INTEGER) is
ptr INTEGER;
BEGIN

ASM pushF;
ASM cli;
LOOP

ptr :=tcb(ndx).retrnsQ;
EXIT WHEN ptr = 0;
tcb (ndx) .retrnsQ := mem manag tbl (ptr); .

give memory(ptr);
END LOOP;
tcb(ndx).prt num :=99;
ASM popF;

END tcb cls;

PROCEDURE activate prt(prt :IN INTEGER) is
BEGIN

pcb(prt).pcbptr :=pcb(pcb head) .pcb~pr
pcb(pcb_head) .pcbptr :=prt;

END activate prt;

PROCEDURE give status(port IN INTEGER) is
hdr len :CONSTANT INTEGER 6;
ndx :INTEGER;
prt :INTEGER;
found BOOLEAN;
listed BOOLEAN; '

box ARRAY (1. .max mem blk) of BOOLEAN;

190

ptr :INTEGER;
bik :INTEGER;
amt :INTEGER;
val :BYTE;

BEGIN-
@oPUT(lsprtQ should be 0, =";oPUT(pcb(port).s_prtQ);
@oNEW LINE;
@ASM -cli; --the remaining code is temporary
@listed :=FALSE;

@IF used_bik /= 0 THEN
@FOR i IN 1. .max mem bik LOOP

@box(i) :=TRUE;
v @END LOOP;

@prt :=free-bik;
@LOOP

@EXIT WHEN prt = 0;
@box(prt) := FALSE;
@prt :=mem manag_tbl(prt);

@END LOOP;
@oPUT("1--- The following memory biks are not free--");
@oNEWLINE;
@oPUT("ldst scr seq ack
@oput("llen crit wnd");
@oNEWLINE;
@FOR i IN 1. .max mem bik LOOP

@IF box(i) THEN
@oNEW LINE;
@oPUT(INTEGER(mem(i) .dst(l)));
@oPUT("1 ");
@oPUT(INTEGER(mem(i) .dst(2)));
@oPUT("1 ");
@oPUT(INTEGER(mem(i) .scr(l)));
@oPUT(" 1);
@oPUT(INTEGER(mem(i) .scr(2)));
@oPUT(" 1);
@FOR j IN 1. .4 LOOP

@oPUT(INTEGER(mem(i) .seq(j)));
@oPUT (1 1);

@END LOOP;
@oPUT(" It

@FOR j IN 1. .4 LOOP
@oPUT(INTEGER(mem(i) .ack(j)));
@oPUT(1" ");

@END LOOP;
@oPUT("1 1);
@oPUT(INTEGER(mem(i) .len(l)));
@oPUT(" 1);
@oPUT(INTEGER(mem(i) .len(2)));
@oPUT("1 ");
@oPUT(INTEGER(mem(i) .ctl));

* 191

AO-RI?3 595 JANUS/ADA IMPLEMENTATION OF A STAR CLUSTER NETNORK OF 3/14
PERSONAL COMPUTERS Ii.. CU) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA R L HARTHAN ET AL. JUN 86

UNCLASSIFIED F/G 17/2 U.

Emhmhmmhhhhhhl
EhEEohhhEEEEEI
mohmhhhhEmhhEIlflflflflflflflfllflflfl.
IIIIIIIIIIIIIIfllfllfl
EEIIEIIIIIIII

wwoug- MIT T

I1

2r2

-i

4, I6

i, , MICROCOPY RESOLUTION TEST CHART~NATIONAL BUREAU OF STANOARS] 3 A

'p

'p,

@oPUT(" 0);
@oPUT(INTEGER(mem(i) .wnd(l)));*,
@oPUT (11"
@oPUT(INTEGER(mem,(i) .wnd(2)));
@oNEWLINE; ' #

@END IF;- 10
@END LOOP;

@END IF;
IF pcb(port).s_prtQ =0 THEN

get memory(blkc);&
IF Elk I-0 THENV

mem(blk) .data(ptr) := BYTE(num prts);
ptr := ptr + 1; /.

FOR i IN 0. :rumprts LOOP %
CASE pcb(i).Pstate is

WHEN cis => mem(blk).data(ptr) :=BYTE(O);
WHEN r I iit =>mem(blk).data(ptr) :=BYTE(l);
WHEN rlogn => mem(blk).data(ptr) :=BYTE(2);
WHEN f init =>mem(blk).data(ptr) BYTE(3);
WHEN rftp -> mem(blk).data(ptr) :=BYTE(4);
WHEN lstn => mem(blk) .data(ptr) :=BYTE(5);
WHEN 1_mnit =>mem(blk).data(ptr) BYTE(6);
WHEN local => mem(blk).data(ptr) :=BYTE(7);
WHEN cising =>mem(blk).data(ptr) :=BYTE(8):
WHEN others =>mem(blk).data(ptr) :=BYTE(9);

END CASE;
ptr :=ptr + 1; -
get tcb ndx(pcb(i).lprt-ad,ndx,found);
IF found THEN

mem(blk).data(ptr) :=pcb(i).l prt ad(l);
ptr := ptr + 1;
mem(blk).data(ptr) :=pcb(i).l-prt_ad(2);
ptr := ptr + 1;
CASE tcb(ndx).Tstate is

WHEN listen =>mem(blk) .data(ptr) :=BYTE(l);
WHEN syn-sent =>

WHENsynrcvmem.(blk) .data(ptr) :=BYTE(2);
WHE sA-c ->

mem(blk).data(ptr) :=BYTE(3);
WHEN estab ->mem(blk) .data(ptr): BYTE(4);
WHEN fin wait 1 =>

WHENfinmem(blk) .data(ptr) :=BYTE(5);
WHENfiwait 2 ->

mem(blk).data(ptr) :=BYTE(6);
WHEN close-wait => t

mem(blk).data(ptr) BYTE(7);
WHEN closing a>

mem(blk).data(ptr) BYTE(8);
WHEN last ack =>

mem(blk).data(ptr) :=BYTE(9);
WHEN time wait =>

192

T .A '7~C' .~C~7 .~C ~7- ~. -27- 7~. -7~7 4' -. 47~. ~ 7.7 .. 7'7 ' 4. '.. ~.. 7'.'7

mem(blk).data(ptr) BYTE(lO);
WHEN others=>mem(blk) .data(ptr): BYTE(O);

END CASE;
ptr :=ptr + 1;

ELSE%
FOR iIN 1. .3 LOOP

mem(blk).data(ptr) :=BYTE(O);

ptr :=ptr + 1;
END LOOP;

END IF;
END LOOP;
mem(blk).data(ptr) BYTE(used-bik);
ptr :- ptr + 1;
mem(blk).data(ptr) :=BYTE(max mem bik);
ptr :=ptr + 1; 4.
amt 0;
FOR i IN 0. .max tcb LOOP

IF tcb(i) .prt num <= rum prts THEN
* amt :=amt + 1;

END IF;
* END LOOP;

mem(blk).data(ptr) BYTE(amt);
ptr :=ptr + 1;
mem(blk).data(ptr) :=BYTE(max tcb);

ASM cli;
outprt (able reg, disable);
ASM sti; -
perf_cmd(rcv-stat);
ptr := ptr + 1;
LOOP

irlprt (ntrpt reg, val);
EXIT WHEN otstbit(val,l);
IF otstbit(val,O) THEN

inprt (statreg, val);
mern(blk).data(ptr) :=val;
ptr :=ptr + 1;

END IF;
END LOOP;
outprt (able reg, ntrpt);

mem(blk).wnd(l) BYTE(port);
mem(blk).wnd(2) :=BYTE(port);
mem(blk) .tcp xsum(l) code status;
mem(blk).tcpxsum(2) BYTE(0);
mem(blk).urg(l) ohi(ptr);
mem(blk).urg(2) :=olo(ptr);
mem(blk) .tcpxsum(2) := xsum(mem(blk) .wnd'ADDRESS,

ptr+hdr-len);
* pcb(port).s_prtQ :=blk;

osetbit (pcb (port) .ack(pcb (port) .flgbyt),
pcb(port).flg bit);

osetbit(pcb(port) .srd(pcb(port) .flgbyt), -

193

49

ar 777777777 -......-

pcb (port). flg bit);
END IF

END IF;

END give status;

END lib;.4,

PACKAGE ntrpthd is

PROCEDURE assy_ntrpt-hdl;

END ntrpthd; a

with rcv;

PACKAGE ASSEMBLY ntrpthd;I mp mnit ntrpt
--asm package must jump code not intended as initialization

PROC assy ntrpt hdl;

CLI
PUS HF
PUSH ax
PUSH bx
PUSH cx
PUSH dx -

PUSH si
PUSH di 4
PUSH bp
PUSH ds -

-~PUSH es
4.CALL ntrpt hdl

POP es ''

POP ds
POP bp
POP di

4 POP si.
POP dx
POP cx Z"
POP bx
POP ax
POPF 'I

STI
IRET

END PROC assy ntrpt hdl;

mnit_ntrpt:
;--initialization of interrupt vector into main memory

PUSH ds
MOV bx,assy ntrpt_hdl
MOV ax,O

194

.4

MOV ds, ax Ji-

MOV di, 114h
MOV [di],bx
MOV bx, cs
INC di
INC di
MOV [di],bx
POP ds

END ntrpthd;
with globall;
PACKAGE convblk is
use globall;

PROCEDURE convblk(blk : IN OUT mem_blk);

END convblk;
with ethrec;
PACKAGE ASSEMBLY convblk; .' .
;--this procedure used to allow converting memory from type
;--mem to type eth (see global.spc)

jmp init

PROC convblk;

JMP ethrcv;

END PROC conv_blk;
init:
END convblk;

package pcbrec is

procedure pcbrcv(inx, prt: in integer); .

procedure advpcb state(nr IN INTEGER);

end pcbrec;

with assylib, lib, globall;
package body pcbrec is

--FILE NAME: PCBREC.PKG
--PROCEDURES CONTAINED: 1. PCB RCV.
-- 2. ADV PCBSTATE.

3.
4. ~ .

--AUTHOR: ALEC YASINSAC
--DATE: FEB 1986
--EXTERNAL REFERENCES:

--GLOBALl.SPC CONTAINS ALL GLOBAL VARIABLES AND TYPES.

195

Js4 .

--LIB.PKG WHICH CONTAINS OUR UTILITY PROCEDURES.
--ASSYLIB WHICH CONTAINS ASSEMBLY UTILITY PROCEDURES.

--INPUT: 1)
-- 2)
--OUTPUT: 1)
--COMPILER: THIS PACKAGE WAS CODED TO COMPILE ON JANUS ADA V.0

--UNDER CPM 86.

--DESCRIPTION: - --

procedure pcb rcv(inx, prt: in integer) is
--AUTHOR: ALEC YASINSAC --DATE: FEB 86
--INPUT: 1. INX IS THE MEMORY BLOCK INDEX OF INCOMING DATA.
-- 2. PRT IS THE PORT NUMBER BEING PROCESSED.
--OUTPUT: 1. FIELDSMODIFIED IN THE GLOBAL TABLE PCB:
-- PSTATE, PRTQ, BUF OUTCNT, BUF OUTPTR,
-- 2. FIELD MODIFIED IN THE GLOBAL TABLE TCB: TSTATE--EXTERNAL MODULES CALLED: 1. NONE. .' "

--DESCRIPTION:
-- THE DATA FROM THE PACKET WILL BE ADDED TO THE END OF THE
-- QUE FOR THE PRIMARY OR SECONDARY CONNECTION.

use globall, assylib;
ind : integer;

BEGIN •.-.

if pcb(prt).l_prt ad = mem(inx).dst then
ind := pcb(prt).prtq;

IF ind = 0 THEN --NOTHING ON QUE FOR PRI CONNECTION.
pcb(prt).prtq := inx; ,

ELSE
while memmanag_tbl (ind) /= 0 t

loop --FIND END OF QUE FOR THIS PORT.
ind := mem manag tbl (ind); 0

end loop ; - -

mem manag tbl(ind) := inx; --ATT NEW DATA TO QUE.
END IF;

else --PACKET NOT FROM PRIMARY CONNECTION.
if pcb(prt).s_prtad = mem(inx).dst then

--PACKET IS FROM FTP DATA CONNECTION.
ind := pcb(prt).sprtq;
IF ind = 0 THEN --NOTHING ON SEC CONNECTION QUE. .'.9"

I., pcb(prt).s_prtq := inx;
ELSE

while mem_managtbl(ind) /= 0
loop --FIND END OF QUE FOR THIS PORT.

ind := memmanag tbl(ind);
end loop; "...
mem manag_tbl(ind) := inx; --ATT DATA TO QUE.

END IF;
@oput(" sprtq =

196

.% 1

@ind :=pcb(pr-t).s prtq;

@exit when ind = 0;
@ind := mem manag_ tbl(iid);

@end loop;
end if;

end if;
end pcb rcv;

PROCEDURE advpcb-state(nr :IN INTEGER) is

use assylib, globall;

BEGIN
CASE pcb(nr).Pstate is

WHEN r mnit =>
oPUT("ladvancing state to rlogn"); oNEWLINE;
pcb(nr).Pstate := rlogn;

WHEN f mnit =>
oPUT("ladvancing state to rftp"); oNEWLINE;
pcb(nr).Pstate :=rftp;

WHEN rftp =>
pcb(nr).sec_act TRUE;

WHEN others =>

oPUT("***error in 'adv pcb state"'); oNEWLINE;

END adv_pcb-state;

end pcbrec;
PACKAGE tcprec is

PROCEDURE tcp rcv(blk :IN INTEGER);
END tcprec;

with tcpsend,pcbrec, ipsend,assylib,l]ib,globall;
PACKAGE BODY tcprec is
use tcpsend,pcbrec, ipsend,assylib, lib,globall;

PROCEDURE pcb_clsing(prt :IN INTEGER) is

BEGIN
pcb(prt).Pstate :=cising;
pcb(prt).time wait :=0;
pcb(prt).sent FALSZ;

END pcbclsing;

PROCEDURE tcprcv(blk :IN INTEGER) is
fin bit : CONSTANT INTEGER :=0;

*syn bit :CONSTANT INTEGER :1;
rst bit : CONSTANT INTEGER :=2;
psh-bit :CONSTANT INTEGER 3;

197

a.a

V*.~-

ack bit :CONSTANT INTEGER 4;
fin :CONSTANT BYTE BYTE(1); l
syn :CONSTANT BYTE BYTE(2); ?

rst~~~~~~k COSATBYE: YT()
rstac : CONSTANT BYTE : BYTE(16#4#)
psh :c CONSTANT BYTE := BYTE(16#)
ack : CONSTANT BYTE BYTE(16);
sack : CONSTANT BYTE : BYTE(16#1#)
off5ac CONSTANT BYTE := BYTE(16##);
off5 : CONSTANT BYTE BYTE(16#60#);

fin -rec, synrec, rst rec, ack-rec :BOOLEAN;
int,nr,ackn,blkl: INTEGER;
sent BOOLEAN;
found :BOOLEAN;
seg len :INTEGER;
ptr :integer;
byt : BYTE;

PROCEDURE cony bik snd(blk: IN INTEGER; sent: OUT BOOLEAN)is

BEGIN
mem(blk).ip dst :=mem(blk).ip scr;
mem(blk).ip scr := c ip ad;
mem(blk).ip-cksum := mem(blk).dst; --temp storage
mem(blk).dst :=mem(blk).scr;
mem(blk).scr :=mem(blk).ipcksum;
mem(blk).ttl :=BYTE(O);
mnt := 6+(upper-nibble(mem(blk) .off) *2);

--num, of words to cksum
mem(blk).ip-cksum(l) :=BYTE(O);--pg. 17 of TCP manual
mem(blk).ip cksum(2) BYTE((int - 6*)

~: £memblk).wn := cv~nd;--tcp header len in byt

*mem(blk) .tcpxsum(l) BYTE(O);
mem(blk).tcp_xsum(2) :=BYTE(O);
cksum(mem(blk) .ttl address, int,mem(blk) .tcp_xsum);

ip se d b sent); :. J N EG R bi

END _ _o b snd;

mem~blk).ipeds OUT BOOLEAN).i sis
memk lkinsgr: ci~d

rem(blk).dst := mem(blk).pscr; _d

mem(blk) .seq : tcb(nr) .lsnxt pad
Vmem(blk).ack tcb(nr).rcv.nxt;

mem(blk).off :=off5;

198

mem(blk).ctl ack;
mem(blk).ip cksum(l) BYTE(O);
mem(blk).ipcksum(2) :=BYTE(20);
mem(blk).wnd := rcv -wnd;
cksum(mem(blk) .ttl 'address, 16,

mem(blk) .tcp xsum);
ip send(blk,sent);

EDgive memory(blk);
END%

send-ack;

PROCEDURE update retrnsQ(nr IN INTEGER;
.ack IN OUT array4) is

ptr :INTEGER;
4BEGIN

LOOP
-ptr :=tcb(nr).retrnsQ;

EXIT WHEN ptr = 0;
IF 1_than(mem(ptr).seq,ack) THEN

tcbnr .rtrsQ mem manag tbl(ptr);
give memory(ptr);

END IF;
END LOOP;

END update_retrnsQ;

BEGIN --begin procedure tcprec
get tcb ndx(mem(blk).dst,nr,found);
seg_len arr-to_int(mem(blk).len) - 20-

(upper nibble(mem(blk).off) *4);

IF found THEN
byt := mem(blk).ctl;
fin rec :=otstbit(byt,fin bit);
syn-rec =otstbit (byt, syn-bit);
rst rec :=otstbit(byt,rst-bit);
ack rec :=otstbit(byt,ack-bit);
CASE tcb(nr).Tstate is

d WHEN listen =>
.4' if rst-rec then

give memory(blk);
RETURN;

end if;
if ack rec then

mem(blk).seq :=mem(blk).ack;
mem(blk).off :=off5; 4~

mem(blk).ctl rst;
cony-bik-snd(blk,sent);

* RETURN;
4.4 END IF;

if syn-rec then
inc_arr(mem(blk) .seq,l,

tcb(nr) .rcv.nxt);

4' 199..

Nt-~-

IP

tcb(nr) .rcv.irs mem(blk) .seq;
tcb (nr).Tstate =syn rcv;
tcb(nr) .rem -sock.ipad mem(blk).ipscr;
tcb(nr) .rem-sock.tcpad mem(blk) .scr;
mem(blk).seq :=tcb(nr).snd.iss;
mem(blk).ack :=tcb(nr).rcv.nxt;

hrn~mem(blk).off off6;
mem(blk).ctl :=syn ack; :
mem(blk).data(1) :mm BYTE(2);
mem(blk).data(2) BYTE(4);
mem(blk).data(3) :~BYTE(4);
mem(blk).data(4) :~BYTE(0);
cony-bik-snd(blk,sent);
Inc arr (tcb (nr) .snd. iss, 1,

2 tcb(nr) .srid.nxt);
tcb(nr).snd.una:= tcb(nr).snd.iss;

RETURN;
end if;

WHEN syn sent =>
-first check for ack

IF ack rec AND NOT rst rec THEN
IF It equ(mem(blk).ack,tcb(nr).snd.iss) OR
g than(mem(blk) .ack,tcb(nr) .snd.nxt) THEN

mem(blk).seq :=mem(blk).ack;
mem(blk).off =of f5;
mem(blk).ctl rst;
cony-bik-snd(blk,sent);
RETURN;

END IF;

END1t Fqu(tcb(nr).snd.una,mem(blk).ack) AND

--second ckeck for reset

IF rst-rec THEN
pcb_cls(tcb(nr).prt_num);
tcbcls(nr);
oPUT ("abort connection due to rst"l) ;oNEWLINE;
give memory(blk);
ntrpt :=rcvpk
RETURN;

1 C ENDE~~; IF;--skip security and precedence *~.

--fourth check for syn
IF syn_rec THEN

inc arr(mem(blk).seq,l,tcb(nr).rcv.nxt); A
tcb(nr).rcv.irs := mem(blk).seq;
IF ack rec THEN

tcb(nr).snd.una := mem(blk).ack; .. ~
IF g_ than(tcb(nr).snd.una,
tcb(nr) .snd.iss) THEN

200

p." tcb(nr).Tstate :=estab; '
advpcb_state(tcb(nr) .prt_num); --in pcbrec
mem(blk).seq tcb(nr).snd.nxt;
mem~blk).ack .=tcb(rir).rcv.nxt;

conv-blksnd(blksent);
RETRN

ELSE

tcb(nr) .Tstate := syn_rcv;
mem(blk).seq :=tcb(nr).snd.iss;
mem(blk).ack :=tcb(nr).rcv.nxt;
mem(blk).off off6;

mem(blk).ctl syn ack;
mem(blk).data(1) BYTE(2); P l
mem(blk).data(2) BYTE(4);
mem(blk).data(3) BYTE(4);
mem(blk).data(4) BYTE(O);
cony bik snd(blk,sent); -p.

RETURN;
END IF;

END IF;
END IF;

WHEN syn rcv. .time wait =>
--first ckeck the seq number

IF seg len < 0 OR seg_len > 512 THEN--error fm sender
oPUT(I"seg_len out of range"); oNEWLINE;
send ack (bik, nr, sent);
RETURN;

END IF;

IF seg len =0 THEN
IF mem(blk) .seq /=tcb(nr) .rcv.nxt THEN

IF NOT rst rec THEN
oPUT("lseg.seq /= rcv.nxt, seg len =0)
oNEWLINE;
send ack(blk,nr,sent);
RETURN;

ELSE
give memory(blk);
RETURN;

END IF;
END IF;

ELSE --seg len > 0.
IF :rto int(rcv_wndT = 0 THEN

NF OT rst rec THEN
oPU(Ilendng ckrcv wnd =0"1); oNEWLINE;

send ack(blk,nr,sent);-

give memory (bik);

201

RETURN;
END IF;

ELSE
IF t~b(nr).rcv.nxt 1=mem(blk).seq THEN

IF NOT rst rec THEN
oPUT("lsegseq-/= rcv.nxt, seg-len > 011);
oNEWLINE;
send ack(blk,nr,sent);
RETURN;

ELSE
give memory(blk);

4 RETURN;
ENDIF

END IF;

END IF; --ends if rcv wnd =0.

END IF; --ends if seg-len =0.

--second, ckeck for rst
IF rst rec THEN --pg206

CASE tcb(nr).Tstate is
WHEN syn roy =>__ __ _I

tcb(nr).Tstate :- listen;
WHEN estab. .close wait =>

if mem(blk).dstE = pcb(tcb(nr).prt-num).s_prt-ad
then

pcb(tcb(nr).prt_num).sec-act :=false;
else

pcb_abort(tcb(nr).prt-num);
end if;

tcb cls(nr); --aborting the tcb
oPUT(I"aborting connection rstrec"); oNEWLINE;

WHEN closing., time wait =>
tcb cls(nr);
oPUT("laborting connection rstrec"); oNEWLINE;

END CASE;
give memory(blk);
ntrptE := rcv-pck;
RETURN;

END IF; --ends if rst rec.
--skip security and precedence
--fourth, ckeck for synrec

IF syn rec THEN --pg 207
CASE tcb(nr).Tstate is

'5..WHEN syn_rcv. .time wait =>
oPUT("'sending reset - condition 2"1); oNEWLINE;
mem(blk).seq :=tcb(nr).snd.iss;
mem(blk).ack tcb(nr).rcv.nxt;
mem(blk).off off6; VAN
mem(blk).ctl :=rst;
cony blk snd(blk,sent);
RETURN ;

END CASE;
END IF;

%

202

--fifth, check for ack 4

IF ack rec THEN
CASE tcb(nr).Tstate is

p WHEN syn rcv =>
IF NOT(lt_equ(tcb(nr) .snd.una,mem(blk) .ack) AND
ltequ(mem(blk) .ack,tcb(nr) .snd.nxt)) THEN

oPUT("'sending reset - condition 3"1);
oNEWLINE;
mem(blk).seq mem(blk).ack;
mem(blk).ack tcb(nr).rcv.nxt;
mem(blk).off off5;
mem(blk).ctl rst;
cony bik snd(blk,sent);
RETURN;

ELSE
tcb(nr).Tstate :=estab;
adv_pcb_state(tcb(nr) .prtnum);

END IF;

WHEN estab..closing =>

IF 1_than(tcb(nr) .snd.una,mem(blk) .ack) AND
P mem(blk).ack = tcb(nr).snd.nxt THEN 4

tcb(nr).snd.una :=mem(blk).ack;
update retrnsQ(nr,mem(blk) .ack);
IF 1_than(tcb(nr) .snd.wll,mem(blk) .seq)
OR (tcb(nr) .snd.wll = mem(blk) .seq AND
it equ(tcb(nr) .snd.wl2,mem(blk) .ack))
THEN

tcb(nr).snd.wnd :=mem(blk).wnd;
tcb(nr).snd.wll :=mem(blk).seq;
tcb(nr).snd.w12 mem(blk).ack;

END IF;
CASE tcb(nr).Tstate is

WHEN estab => null;

WHEN fin wait 1 =>
IF fin_rec THEN

tcb(nr).Tstate :=fin wait 2;
END IF;

WHEN fin wait_2 =>
pcbcls(tcb(nr) .prt_num);

WHEN close-wait => null;

WHEN closing =>
IF mem(blk).ack = tcb(nr).snd.nxt THEN

tcb(nr).Tstate :=time wait;
END IF;

END CASE;

203

-~~~~~~. -

.0

END IF;
.. A.

WHEN last-ack =>
IF mem(blk).ack =tcb(nr).snd.nxt THEN

pcbcls(tcb(nr) .prt rium); 7V
% tcb cls(nr);

oPUT("laborting in last ack"); oNEWLINE;
ntrpt := rcv pck;
give memory (bik);
RETURKN;

END IF; g'

%J1
5. WHEN time wait ~

pcb_cls(tcb(nr).prt num);
tcb_cls(nr);
oPUT("laborting in time-wait"); oNEWLINE;
ntrpt := rcvpck;
give memory(blk);
RETURN;

WHEN others => null;
4.END CASE;

ELSE --no ack received. %
give-memory(blk);
RETURN;

END IF; --ends if ack rec.
--skip check for urg
--seventh, process the segment

IF seg_len > 0 THEN
CASE tcb(nr).Tstate is

4.WHEN estab..fin wait 2 =>
inc~rr~tb~nr.rcvnxt~eg ln~tc~nr)rcv.xt)

incarr(tcb(nr) .rcv.wnx,seg len,tcb(nr) .rcv.nt);

get memory (ackn);
if ackn > 0 then

mem(ackn).ttl BYTE(0);
A-.mem(ackn).prot BYTE(6);

-, mem(ackn).ip cksum(l) :=BYTE(0);
mem(ackn).ip_cksum(2) :=BYTE(20);
mem(ackn).ip scr loc_ip_ad;
meNcn)i:s _e~l).psr

-~ mem(ackn).idst mem (blk) .ip sr

mem(ackn).scr tcb(nr).loc -sock.tcp_ad;
mem(ackn) .seq :=tcb(nr) .snd.nxt;
mem(ackn) .ack :=tcb(nr) .rcv.nxt; "M
mem(ackn).off :=off5;
mem(ackn).ctl ack;
mem(ackn) .wnd :=rcv wnd;
mem(ackn) .tcpxsum(l) : BYTE(0);
mem(ackn) .tcpxsum(2) BYTE(0);
mem(ackn).urg(l) := BYTE(O);

204

X~~ ~~~ A V" .V .U - U LU U JIM qku k. . P.7.p ,~~. ' A~'

mem(ackn).urg(2) :=BYTE(0);
cksum(mem(ackn) .ttl 'address, 16,

mem(ackn) .tcp_xsum);PJ.N
ip send(ackn, sent);
give memory(ackn);
mem(blk).frm len := seglen; -- # of data bytes
mem(blk).spare :=1; --start of data
pcb_rcv(blk,tcb(nr).prt_num);

else
null;--$

end if;

WHEN close wait. .time wait =>

-: ~give memory (blk); -.

RETURN;

END CASE;
END IF;

--eighth, check for fin -

IF fin rec THEN
IF tEcb(nr) .Tstate=listen OR tcb(nr) .Tstate=syn sent
THEN

give memory(blk); V
ntrptE: rcv-pck;
RETURN;

ELSE
incarr(tcb(nr) .rcv.rixt,1,tcb(nr) .rcv.nxt);
oPUT("Connection closing"); oNEWLINE;
IF seg len > 0 THEN

get memory(blkl);
IF blkl /= 0 THEN 1h

mem(blkl) := mem(blk);
ELSE

RETURN;
END IF;

* ELSE
blkl := blk;

END IF;
CASE tcb(nr).Tstate is

WHEN syn rcv. .estab =>
send-ack(blkl,nr,sent);

*tcb(nr).Tstate := close wait;
if tcb(nr).loc_sock.tcp_ad-

pcb(tcb(nr).prt-num).s-prt-ad then
pcb(tcb(nr).prtnum).sec act := false;
tcpclose(pcb(tcb(nr) .prt -num) .s_prt_ad);
tcb_cls (nr);

else
pcb_clsing(tcb(nr) .prtnum);

end if;
WHEN fin wait 1 =>

205 -VV

rp - p - F -- SE-

IF mem(blk).ack = tcb(nr).rcv.nxt THEN
tcb(nr) .Tstate := timewait;

ELSE
tcb(nr).Tstate := closing;

END IF;

WHEN fin wait 2 =>
tcb(nr).Tstate := timewait;

WHEN close wait..time wait => null;

END CASE;

RETURN;
END IF;

END IF; --end if fin rec.
IF seg_len = 0 THEN

givememory(blk);
END IF;

END CASE;
ELSE -- no tcb entry for tcp dst address.

oPUT("sending reset - tcb not found"); oNEW LINE;
mem(blk).ipdst := mem(blk).seq; --temp storage

mem(blk) .seq := mem(blk) .ack;
mem(blk).ack := mem(blk).ip_dst;
inc arr(mem(blk).ack,seglen,me(blk).ack);
mem7(blk).off := off5;
mem(blk).ctl := rst ack;
conv blksnd(blk,sent);-- sending bad tcb index!?
RETURN;

END IF;
E tcp rcv;
E tcprec;
PACKAGE iprec is

PROCEDURE ip rcv(blk IN INTEGER);

END iprec;

with tcprec,lib,globall;
PACKAGE BODY iprec is
use tcprec,lib,globall;

PROCEDURE ip_rcv(blk : IN INTEGER) is
5,, arpa ver CONSTANT BYTE :- BYTE(16#45#);

arpaprot CONSTANT BYTE BYTE(16#06#);
int INTEGER;
BEGIN

IF mem(blk).ver /= arpaver THEN
give memory (blk);
RETURN;

206

4-.

-PIP

END IF;

IF mem(blk).frm len > 576 THEN
give memory (blk);
RETURN;

END IF;

IF mem(blk).prot /= arpaprot THEN
give memory(blk);
RETURN;

END IF;

IF mem(blk).ipdst./= loc ipad THEN
give memory(blk);
RETURN; .

END IF;

tcprcv(blk);
END ip_rcv;
END iprec;
with globall;
PACKAGE ethrec is
use globall;

PROCEDURE ethrcv(blk : IN OUT ethpck);

END ethrec; --

with lib,globall;
PACKAGE BODY ethrec is
use lib,globall;
--this package handles the packets that don't have an arpa
--protocol structure. there are two types to handle,
-- 1. broadcast packets sent to us asking for our ethernet
-- physical address and
-- 2. packets addressed to us giving us the sender's

4. -- physical address (ie. in response to our request for
-- their address

--TYPE ethpck IS RECORD
-- frm stat : array2; -- see RFC826.TXT,
-k48H-frm len : INTEGER; --Network Info Center,

-- to eth ad array6; -- for details:
-- fm-eth-ad : array6; --arpanet SRI-NIC
-- type_pck : array2;
-- ar hrd : array2; r.A
-- arpro : array2;

ar len : array2;
nul BYTE;

-. ar op : BYTE;
-- fm eth : array6;
-- fm_ip : array4;

207

.Z4

.4!
.4°j

-- to eth array6;
-- to ip array4; 'N
-- END RECORD;
PROCEDURE eth rcv(blk : IN OUT ethpck) is
maxint : CONSTANT INTEGER := INTEGER(16#7FFF#); .
ndx INTEGER := 1;
oldest : INTEGER;

BEGIN
IF blk.to ip = locip_ad THEN "

IF blk.ar op = BYTE(l) THEN
eth.to eth ad := blk.fm eth;

4.. eth. ar_op := BYTE (2);
eth.to eth := blk.fm eth;
eth.to-ip -:= blk.fm ip;
trnpck(eth.toeth ad'address,minsize);

ELSE

ntrpt := rcv pck;
END IF;
outer : LOOP

IF ad tbl(ndx).update = 0 THEN
ad-tbl(ndx).ipad := blk.fmip;
ad tbl(ndx).eth ad := blk.fm eth;
ad-tbi(ndx).update := nxtprtad;
inner : LOOP
ndx := ndx + 1;
EXIT outer WHEN ndx > maxad;
IF blk.fm ip = ad tbl(ndx).ip ad THEN

ad tbl(ndx).update := 0;
EXIT outer;

END IF;
END LOOP inner;

ELSE
ndx := ndx + 1;
IF ndx > max ad THEN --no room left so

oldest :=-max int; --remove oldest
FOR i IN I..max ad LOOP

IF adtbl(i).update
< oldest THEN y-.

ndx := i;
END IF;

END LOOP;
ad tbl(ndx).ip ad := blk.fm ip;
ad-tbl(ndx).eth ad := blk.fm eth;
ad-tbl(ndx) .update = nxt prt ad;
EXIT outer;

END IF;
END IF;

END LOOP outer;
ELSE

ntrpt := rcvpck;
END IF;

208
"*.1'**

,--4
-. m

"i °%

END ethrcv;
END ethrec;
PACKAGE rcv is

PROCEDURE ntrpt-hdl;

END rcv;

with convblk, iprec, assylib, lib, globall;
PACKAGE BODY rcv is
use convblk, iprec,assylib, lib,globall;

PROCEDURE ntrpt-hdl is
--author r. l.- hartman
--date 22 feb 86
--this procedure handles interrupts from the N13010 ethernet
--controller board. the 4 types of interrrupts are:
-- 1. rcvpck received a packet from ethernet
-- 2. rcv DMA dn DMA done on incomming packet
-- 3. tx DMA dn DMA done on outgoing packet
-- 4. disable when the interrupt hdlr xmits a packet
val : BYTE;

BEGIN
outprt (able reg, disable);

%

CASE ntrpt IS _ -

WHEN disable =>
perfcmd(ld_snd);
ntrpt := rcv pck;

WHEN rcvpck =>
get memory(wrd);
IF wrd = 0 THEN --no space avail

oPUT ("no memory blocks available!"); oNEW LINE;
ntrpt := rcvpck;
outprt(ablereg,rcvpck);

ELSE
wrad(mem(wrd) 'address);
outprt(h_cnt_reg,ohi(blk size));
outprt(l_cntregolo(blksize)); % %

ntrpt :=rcv dma dn;
outprt(able reg,rcv dma dn); %-%

END IF;
WHEN rcvDMA dn =>

ntrpt := disable; --for possible trns
IF mem(wrd).type_pck(l) = BYTE(16#08#) THEN

IF mem(wrd).type pck(2) = BYTE(16#00#) THEN
ip rcv(wrd);

ELSE IF mem(wrd) .typepck(2)=BYTE(16#06#)THEN 2"1

209

-. i

.'. * * "- * * -- -.-.A,

cony blk(mem(wrd));
give memory(wrd) ;--eth rcv can't do
END IF;

END IF;
ELSE 1

give memory(wrd);
END IF;
ASM cli; --clear interrupts
IF ntrpt -disable OR ntrpt =rcvpck THEN

ntrpt :=rcvpck;
outprt (able_reg, rcvpck);

END IF;

WHEN txDMA dn =>
perfcmd (1dsnd);
ntrpt := rcv_pck;
outprt(ablereg,rcv-pck);

END CASE;
END ntrpt_hdl;

END rcv;
PACKAGE ethsend is

PROCEDURE eth snd(blk IN INTEGER; size: IN INTEGER;
resit : OUT BOOLEAN);

END ethsend;

with assylib, lib,globall;
PACKAGE BODY ethsend is
USE assylib, lib,globall;

PROCEDURE eth snd(blk : IN INTEGER; size : IN INTEGER;
resit : OUT BOOLEAN) is

sent :CONSTANT BOOLEAN :=TRUE;
not sent :CONSTANT BOOLEAN :=FALSE;
found :BOOLEAN;

BEGIN
resolve -ad(mem(blk) .ip dst,mem(blk) .to-eth-ad, found);
IF found THENp..

mem(blk).fm eth ad := loc eth ad;
Vmem(blk).typepck(l) : BYTE(8); -- standard for
-~mem(blk).typepck(2) :=BYTE(0); --arpanet packets

trnpck(mem(blk).to-eth ad' address,
grtr-of(size + 14, min_size));

resit := sent; -

ELSE
oPUT("1cannot find ethernet addr"); oNEWLINE; -..

FOR i IN 1..6 LOOP
eth.to -eth-ad(i) := BYTE(16#FF#);

END LOOP;

~5 210

ry T. 7- TT1-7 1 11-7-r7t i - 1olIVV. 77777-- -- r r wY.V -7 k-PC

eth. ar op :=BYTE(1);
eth.toilp :=mem(blk).ip_dst;
trnpck(eth.to-eth-adladdress,min_size);
resit :=not-sent;

END IF;
END eth snd;
END ethsend;
package ipsend is

procedure ip-send(inx: in integer; rslt: out BOOLEAN);
end ipsend;

with assylib, lib, ethsend, globall;
PACKAGE body ipsend IS

procedure ip-send(±nx: in integer; rslt: out BOOLEAN) is
--AUTHOR: ALEC YASINSAC DATE: FEB 1986
--INPUT: 1.INX IS THE MEMORY BLOCK INDEX TO BE TRANSMITTED.

* --OUTPUT: 1.RSLT IS AN ERROR FLAG
--DESCRIPTION: IPSEND SETS THE IP HEADER FIELDS OF THE

-- PACKET TO BE TRANSMITTED TO A REMOTE HOST, AND CALLS
-- THE PROCEDURE THAT WILL PASS THE PACKET OUT ONTO
-- ETHERNET.
use assylib, lib, ethsend, globall;
ip_hdr-len :CONSTANT INTEGER := 20;
totlen: integer;

begin
mem(inx).ver :=byte(16#45#);--4 is protocol version,
me ~nx.serv :=byte(0) ;--5 is # of 32 bit words in hdr
mem(inx).id(l) :=byte(0);
mem(inx).id(2) :=byte(0);
mem(inx)*.flag(1) :=byteCO);
mem(inx).flag(2) :=byte(0);

mem(inx).ttl := byte(16#OF#);
totlen := arr -to -int(mem(inx).ip_cksum) + ip hdr-len;
mem(inx).len(1) :=ohi(totlen);

.4. mem(inx).len(2) :=olo(totlen);
mem(inx).ip cksum(1) :=BYTE(O);
mem(inx).ip cksum(2) :=BYTE(0);

cksum(mem(inx) .ver'address,l0,mem(inx) .ip cksum);
--THE TCP OPEN PROCEDURE SETS THE IP CKSUM FIELD TO
--CONTAIN THE LENGTH OF THE TCP HEADER AND DATA. THE
--LEN FIELD CONTAINS THE LENGTH OF THE THE IP HEADER.
-- THE LENGTH OF THE PACKAGE IS THE SUM OF THESE TWO
-- FIELDS.

ethsnd(inx,totlen,rslt);
--TOTLEN IS PACKAGE LENGTH IN BYTES.

end ip_send;
end ipsend;
with globall;
package tcpsend is

use globall;

211

%7*6
IL j

PROCEDURE tcpopen(prt: IN INTEGER;
foreign sock: IN OUT socket rec; act: IN BOOLEAN;

pi oc tcp ad: OUT array2; rslt: OUT BOOLEAN);

%PROCEDURE tcpsend(indx: IN INTEGER;OUBOLA)
data-len : IN INTEGER; tcp ad: IN OUT array2;

PROCEDURE tcp-close(tcpad : IN OUT array2);

PROCEDURE check-retrnsQ(tcp-ad :IN OUT array2);

end tcpsend;

with ipsend, lib, assylib, globall;

PACKAGE body tcpsend IS
use ipsend, lib,assylib,globall;

--last updated 29 Apr 86
hdr len : CONSTANT INTEGER :=16;
datawrds : INTEGER;

0 PROCEDURE check retrnsQ(tcp ad : IN OUT array2) is
ndx : INTEGER; .u
exists :BOOLEAN;
ptr : INTEGER;
BEGIN

get -tcb ndx(tcpad,ndx,exists);
IF exists THENIptr := tcb(ndx).retrnsQ;

LOOP
EXIT WHEN ptr = 0;
mem(ptr).spare := mem(ptr).spare + 1;
IF mem(ptr).spare >= 10 THEN

mem(ptr).ttl := byte(0);
mem(ptr).ip_cksum(l):= ohi(mem(ptr).frm -len+20);

%C mem(ptr) .ip cksum(2) := olo(mem(ptr) .frm len+20);
mem(ptr).tcp xsum(1) :=byte(0);Il

mem(ptr).tcp_xsum(2) :=byte(0);
IF mem(ptr).frm -len < 512 THEN

L mem(ptr) .data(mem(ptr) .frm len+l) :=BYTE(0);
END IF;

*datawrds := hdr len + (mem(ptr).frm-len + 1)/2;
cksum (mem(ptr) .ttl'address,datawrds,

ipsend(ptr, exists);mept)cpsu)
tcb (ndx).retrnsQ : = mem manag tbl (ptr);
give memory(ptr);
oPUT("lretransmit bik # "1); oPUT(ptr) ;oNEWLINE;
oPUT("'seq # "1);

FOR i IN 1..4 LOOP
oPUT(INTEGER(mem(ptr) .seq(i))); '

212 ::

-P~~~~'. -,ji-6 .i ~

oPUT(" ");
END LOOP; oNEW LINE;
oPUT ("ack # ") 7
FOR i IN 1..4 LOOP- "

oPUT(INTEGER(mem(ptr).ack(i)));
oPUT(" ")

END LOOP; oNEW LINE;
oPUT ("scr TCP");
oPUT(INTEGER(mem(ptr) .scr(1)));
oPUT(" ");
oPUT(INTEGER(mem(ptr) .scr(2)));
oNEW LINE; .-
EXIT;

END IF;
ptr := mem manag tbl(ptr);

END LOOP;
END IF;

END checkretrnsQ;

PROCEDJRE tcp open (prt: in integer;
foreignsock: IN OUT socket rec; act: in boolean;
loc_tcpad: OUT array2; sent: OUT BOOLEAN) is "

--AUTHOR: ALEC YASINSAC --DATE: FEB 86
-- INPUT: 1. INX IS THE INDEX FOR THE TCB ARRAY RECORD.
-- 2. FOR IP AD IS THE IP ADDRESS OF THE REMOTE HOST
-- 3. ACT INDICATES WHETHER THE CONNECTION IS ACTIVE
-- OR PASSIVE. THE PASSIVE, OR HOST, CONNECTION -

-- MAY BE IMPLEMENTED AT A LATER DATE.

--OUTPUT: 1. GLOBAL ARRAY 'MEM'
-- 2. PARAMETER LOCAL TCP ADDRESS
-- 3. GLOBAL ARRAY PCB
-- 4. GLOBAL ARRAY TCB
-- 5. PARAMETER RESULT
-- 6.
--EXTERNAL MODULES CALLED: 1. oHI, oLO

2. GET MEMORY . ..
3. ADD 4BYT ARRS
4. IP SEND
5. CKSUM

-- DESCRIPTION: TCP OPEN OPENS A TCP CONNECTION BETWEEN THE
-- SELECTED FOREIGN HOST AND THE Z100. A TCB RECORD WILL BE .
-- BUILT AND A SYN SIGNAL PACKET IS BUILT AND PASSED TO
-- IP SND FOR TRANSMISSION TO THE DESTINATION ADDRESS. '

-- THIS PROCESS IS EXPLICITLY DESCRIBED IN THE STANFORD - "
-- RESEARCH CENTER REQUEST FOR COMMENT MANUALS, SRI-RFC. -
-- RFC-793 IS THE TCP MANUAL. SOME IMPORTANT PAGES ARE
-- 54, 45, 31, 16, AND 17.

-- DECLARATIONS FOR PROCEDURE TCP OPEN .,'-
indx, inx: integer;
overflo, exists: boolean; b-4i

213

P J.

IN~

arr4isl array4;%

begin --BEGIN PROCEDURE TCPOPEN.
loctcpad(l) :=ohi(nxt-prt_ad);
loctcpad(2) olo(nxt-prt_ad);
nxtprt ad :=inc nxt prt ad(nxt ptad) ;--betw 0400-ffffH
get tcb ndx(loc tcp ad, inx, exists);
if exists then

N.sent :=false;
return;

end if;
tcb(inx).prt_num := prt;
tcb(inx) .l bcsock.tcp ad := oc tcp ad;
tcb (inx) .loc sock.ipad := c ip_ad;
tcb(inx).rem sock := foreign_sock;
tcb(inx).snd.iss(l) byte(O);--MAKE FIRST SEQ # EQUAL
tcb(inx).snd.iss(2) :=byte(O);--TO TCP ADDR TO BE USED.
tcb(inx).snd.iss(3) :=tcb(inx).loc sock.tcp ad(l);
tcb(inx).snd.iss(4) tcb(inx).loc sock.tcpad(2);

--ASIGNENTOF ISS FIELD MADE ARBITRARILY.
tcVn).n.n tbix.sdis

tcb(inx).snd.una tcb(inx).snd.iss;

tcb(inx).ctl :=byte(2);
if act then

get memory(indx);
if mndx =0 then

sent :=false;
return;

end if;
mem(indx).scr(l) lo c tcp ad(l);--SET LOCAL SOCK #

mem(indx).scr(2) loc tcp ad(2);
tcb(inx).tstate :=syn sent;
mem(indx).ttl :=byte(0);--MUST BE ZERO TO COMPUTE
mem(indx).prot byte(6); --TCP CKSUM.
mem(indx).ipcksum(l) :=byte(O);
mem(indx).ip_cksum(2) := byte(24);--SET TO TCP LENGTH
--FOR COMPUTATION OF TCP CHECKSUM.SEE p17 TCP MANUAL.

mem(indx).ip_scr := loc ip_ad;--INIT TO LOCAL IP ADDR.
mem(indx) .ip dst:-tcb(inx) .rem sock.ip_ad;
mem(indx) .dst tcb(inx) .rem sock.tcp ad;
mem(indx).seq :=tcb(inx).snd.iss;
mem(iridx).ack(l) byte(O);
mem(indx).ack(2) :=byte(0);
mem(indx).ack(3) :=byte(O);
mem(indx).ack(4) :=byte(0);
mem(indx).off :=byte(16#60#);
mem(indx).ctl byte(16#2#);
mem(indx) .wnd rcv wnd; --MAX PACKET SIZE TO REC.
mem(indx).tcpxsum(l) := byte(0);
mem(indx).tcp_xsum(2) byte(0); -- p16 TCP MANUAL.

--ZERO OUT XSUM FIELD BEFORE COMPUTING TCP CHECKSUM.
mem(indx).urg(l) byte(0);

214

F e

mem(indx).urg(2) byte(O);
mem(indx).data(l) byte(2); -- TELNET RESET CODE.
mem(indx).data(2) byte(4);
mem(indx).data(3) byte(4);
mem(indx).data(4) byte(O);--make even num for cksum
cksum (mem(indx).ttl'address, 18, mem(indx).tcpxsum);

--THERE ARE EIGHTEEN 16 BIT WORDS IN THE TCP AND
-- PSEUDO HEADERS. CKSUM USES THE STARTING ADDRESS
--AND LENGTH TO COMPUTE CHECKSUM.

ip send(indx, sent); --IF RSLT OF IPSEND IS GOOD,
give memory(indx); --TCP_SEND IS ALSO GOOD.
IF NOT sent THEN

tcb(inx).prt_num := 99;
ELSE

tcb(inx).snd.una := tcb(inx).snd.iss;
inc arr(tcb(inx).snd.iss,l,tcb(inx).snd.nxt);

END IF;
else -- PASSIVE CONNECTION.

tcb(inx).tstate := listen;
pcb(tcb(inx).prtnum) .s_prtq 0;

end if;

end tcpopen;

procedure tcpsend(indx: IN INTEGER; data len : IN INTEGER;
tcpad: IN OUT array2; sent: OUT BOOLEAN) is

--AUTHOR: ALEC YASINSAC --DATE: FEB 86
-- INPUT: 1. INDX IS INDEX OF MEMORY BLOCK TO BE TRANS.
-- 2. DATA LEN IS THE NUMBER OF DATA BYTES IN THE PACKET.
-- 3. TCP AD IS THE LOCAL TCP ADDRESS SENDING THE PACKET.
-- 4. RSLT IS THREE VALUED ERROR FLAG.

--OUTPUT: 1. GLOBAL ARRAY 'ME1'4
-- 2.
-- 3. GLOBAL ARRAY PCB
-- 4. GLOBAL ARRAY TCB
-- 5. PARAMETER RSLT

--EXTERNAL MODULES CALLED: 1. IP SEND
2. ADD_ 4BYT ARRS
3. GETTCB INDEX
4. CKSUM
5.

--DESCRIPTION: TCP SEND SENDS A PACKET TO REMOTE HOST
-- FROM Z100. THE TCB RECORD WILL BE UPDATED. MUCH OF
-- THIS PROCESS IS EXPLICITLY DESCRIBED IN THE STANFORD
-- RESEARCH CENTER REQUEST FOR COMMENT MANUALS, SRI-RFC. "
-- RFC-793 IS THE TCP MANUAL. SOME IMPORTANT PAGES ARE
-- 54, 45, 31, 16, AND 17.

--DECLARATIONS FOR PROCEDURE TCP SEND

215

~ ~ ~.. .~.2.. .~ . .~ * - .- P. ~ . *- . .* .~ ..- '- .*. .* . .•.. 2 .

inx: integer;
overflo: boolean;
exists: boolean;

begin --BEGIN PROCEDURE TCPSEND.
get tcb ndx(tcp ad, inx, exists); I.

IF exists THEN
ad tomem(indx).frm len := data len;

mem(indx).ttl:=byte(0);--S ET TO 0 TO COMPUT TCP CKSUM.
mem(indx).prot := byte(6);
mem(indx).ip-cksum(1) :~ohi(data len+20);--SEE P17
mem(indx).ip cksum(2) :olo(data len+20);--TCP MAN.
mem(indx) .ip scr := tcb(inx) .l bcsock. ip ad;

A mem(indx) .ip_dst:=tcb(inx) .rem sock.ip_ad;
mem(indx).scr tcb(inx).loc sock.tcp ad;

%mem(indx) .dst :=tcb(inx) .rem-sock.tcp ad;
mem(indx).seq :=tcb(inx).snd.nxt;--PAGE 40, TCP MAN.
inc arr(tcb(inx).snd.nxt,data_len,tcb(inx).snd.nxt);

f --THfE SND.NXT FIELD IS THE SUM OF THE SEQUENCE NUMBER
--AND THE NUMBER OF DATA BYTES IN THE PACKET. p40.
mem(indx).ack :=tcb(inx).rcv.nxt;
mem(indx).off :=byte(16#50#);

--TCP HEADER IS 5 32 BIT WORDS LONG. p16.
mem(indx).ctl := byte(16#18#);--WHILE CONNECTION IS

--ETABISHDWILL ALWAYS SET ACK BIT. p16.
mem(indx).wnd :=roy wnd;--MAX PACKET SIZE TO RECEIVE.
mem(indx).tcp xsum(1) byte(0);--ZERO TO TO COMPUTE
mem(indx).tcp xsum(2) :=byte(0);--TCP CHECKSUM, p16.
mem(indx).urg(1) :=byte(0);
mem(indx).urg(2) :=byte(O);
IF data len < 512 THEN
mem(indx) .data(data len+1) := BYTE(0);
END IF;
datawrds := hdr len + (data len + 1)/2;
cksum (mem (mxd).ttl 'dr-,datawrds,%
ip send(indx, sent);meidx.tpxu)

ASM cli;
IF NOT sent THEN

oPUT("lpacket not sent, in proc tcp_send"); oNEWLINE;
END IF;
mem(indx).spare :=0; --reset counter for
IF tcb(inx) .retrnsQ =0 THEN --retransmission

tcb(inx).retrnsQ := dx;
ELSE --need proc add -to_-Q

datawrds := tcb(inx).retrnsQ;
LOOP

EXIT WHEN mem-manag_tbl(datawrds) = 0;
-x datawrds := mem-managtbl(datawrds);

END LOOP;
mem- Manag~tb1(datawrds) := dx;

END IF;

216

ASM sti;-
END IF;

end tcp send;

PROCEDURE tcp_close(tcp_ad IN OUT array2) is POQ-1

indx,inx: INTEGER;
exists :BOOLEAN;
asciiC :CONSTANT BYTE BYTE(16#43#) ;

*sent BOOLEAN;
ptr INTEGER;

BEGIN
3 get_tcb_ndx(tcpad,inx,exists);

IF exists THEN
.4 get memory(indx);

IF indx /= 0 THEN
mem(indx).ttl :=byte(O);
mem(indx).prot :=byte(6);
mem(indx).ipcksum(1) BYTE(O);
mem(indx).ip cksum(2) BYTE(20);
mem(indx).ipscr :=tcb(inx).loc_sock.ip_ad;
mem(indx) .ip dst:=tcb(inx) .rem -sock.ip_ad;
mem(indx).scr tcb(inx).loc sock.tcp ad;
mem(indx).dst tcb(inx).rem sock.tcp ad;
mem(indx).seq tcb(inx).snd.nxt;
inc arr(tcb(inx).snd.nxt,l,tcb(inx).snd.nxt);
mem(indx).ack tcb(inx).rcv.nxt;
mem(indx).off byte(16#50#);A
mem(indx).ct. byte(16#11#); -

mem(indx) .wnd rcv wnd;
mem(indx) .tcpxsum(1) byte(O);
mem(indx).tcp xsum(2) :=byte(O);
mem(indx) .urg(l) byte(O); .*.

mem(indx) .urg(2) byte(O);
cksum (mem(indx) .ttl'address,16,

ipsed~inx, snt); mem(indx) .tcpxsum);
ip~sen~indxsent.

CASE tcb(inx) .Tstate is
WHEN estab => tcb(inx).Tstate fin wait_1;

WHEN others => tcb(inx) .Tstate last ack;
END CASE; A.

give memory(indx);
A tcp_ad(l) byte(O); V*

'Atcp_ad(2) byte(0);
END IF;

END IF;
END tcp_close;

END tcpsend;

PACKAGE locXfer is

217

PROCDUREloc-nit~rt I INTGER)

PROCEDURE boc~i(prt : IN INTEGER);

END locXfer;

WITH lib,assylib,globall;

.6. ZPACKAGE BODY locXfer isI USE lib,assylib,globall;
code_print: CONSTANT BYTE := BYTE(16#D4#);
code_endprint: CONSTANT BYTE := BYTE(16#F4#);

_y : _inutTE0;HE

in t input _EGR

PROCE CSE ocb t(pt:inut)tPstat is

begtiiput
inr~pbpcb).int iput)lccn =pt

inprtpcb(prt).Ptapte := oc;
pbint inpu ITGRbt);sae*=lcl

IF in acptivateu prt AN mt int; pt>=0TE
CAS prit (pcb (mt input) daaprsn-ly)

WHEN local =>
IF NCT pcb int input)i pritEHE

pcb(prt).loc con :=cbntintput) lccn
pcb(int_input).loc -con := prt;
pcb(prt) .Pstate :=local;

outprt(pcb(prt) .data_prt,nullbyt); 4
END IF;

WHEN locital

pcb(prt) .Pstate locl;

WHEN clsni =>
pcb(prt).Pstate lstn;

WHEN oths => lz
9 ~pcbc(prt);tt sn

WEN CAhsE;>
ELScb~cls(prt);

END IF; SE;
ELSE

218

17 1"T" ~ .-7V U ~ ~ 4) vs~ 1-TJ. .). X -- k 1J VT My vy 4
Wj JS1 wy xV~vU-j. .2 W~ -31' Wx"- . jv%6

.4.- .J

pcb(prt).time wait pcb(prt).time wait + 1; J.
IF pcb.(prt).timewait - threshold THEN

pcbcls(prt);
END IF;

END IF;
end loc init;"'

PROCEDURE loc(prt: in integer) is

--this is a user datagram designed for local transfers:
' -- mem blk

-- +------------ -- -- - -- -

-- wnd(l) I dest

-- wnd(2) source -
+-------------

-- tcp xsuml type I I--overlay onto tcp header
-- +----------

-- tcpxsum cksum I I
-- rg() +------------

urg(1) I lengthl.
+----------

-- urg(2) I length2l

-- d data

-- I (512) r V

-- +-------------

page : CONSTANT BYTE : BYTE(16#OC#); '
hdr len : CONSTANT INTEGER := 6;
blkptr,bytcnt : INTEGER;
ndx : INTEGER;
found : BOOLEAN;

PROCEDURE snddata toprinter(prt, blk : IN INTEGER) is
BEGIN

inprt(pcb(prt) .statprt,byt);
IF otstbit (byt,TxRdy) AND otstbit (byt, DSR) THEN

IF mem(blk).spare > 0 THEN ...
CASE mem(blk) .data(mem(blk) .spare) is 4"

WHEN BYTE(16#lA#) >
mem(blk).frm len := 0;
RETURN;

WHEN BYTE(16#20#) ..BYTE(16#7E#) =>
pcb(prt).prtQ := pcb(prt).prtQ + 1;
outprt(pcb(prt) .data_prt,

mem(blk) .data(mem(blk) .spare));
WHEN BYTE(16#OD#) =>

.4%"

219

% . *. . .4 4 4 ,. .%. * '. . - -. . • . , 2 4 .. . • - . 4 - ., ..'. j .' - .-- ..,,' .. -" .' " ..-' -. . -.*- --.--,%.-. ,• - . ._- .-...-....- .,.,*.. ,. _, ,.._

h pcb(prt).prtQ 0; '

outprt (pcb (prt).data prt,
WHE BYE(6#0#mem(blk) .data(mem(blk) .spare));

FOR i IN l..(8-pcb(prt).prtQ mod 8) LOOP
LOOP N

inprt(pcb(prt).stat prt,byt);

outrt~cb~rt.dataprt,BYTE(16#20#));

END~EN CAEIF; l) dt~e~lk sae)

meplc).frm).plen: 0;
ENDN IF;r =

END IF;E

ptrbk)spr := prt;k.sar

EXTEN~l).r pcb mptr).oc con le 1;t

ptr = pbkptr).locnco;
END LOO;

IF p _bprinteprQ; 0TE

PROCEUgie memory (ptrIN IspTQGE)i
pcptr.rpt := 0;EGR

ptrb= tr)Ptt : sn

EIWNpcb(ptr).Qco : 0;

pcb :=cls(ptr);lccn
END IFO;

END remove .Yo link;rTEN-oyoe etinln

igripvept .statypbr byt);)

IF pcpt)i~ rn HN- v

pcbpt).Ptae : ltw
pcb~pr),;ptQ 0

ELSE.

* ~ ~ ~ c~l (ptr)~~* 4 .* * . S.~

* ~ ~ ~ ~ ~ N IF;. -- 4

IF otstbit(byt,RxRdy) THEN --check for cntl
inprt(pcb(prt) .data_prt,byt);
CASE byt is

WHEN code-cis =>
IF pcb(prt) .s prtQ /= 0 THEN

* give memory(pcb(prt) .sprtQ);
pcb(prt).s_prtQ 0;

END IF;
remove lirik(prt);
pcb_cls(prt);

WHEN code status =>
outprt (pcb (prt) .data_prt, code_status);
give_status(prt);

WHEN code-reqPrt =>
outprt (pcb (prt).data_prt, code reqPrt);
outprt(pcb(prt) .data_prt,BYTE(prt));

WHEN code loc =>
* outprt(pcb(prt) .data_prt,code cls);

WHEN code-print =>
ptr :=0;
LOOP

IF pcb(ptr).is_print AND
pcb (ptr) .Pstate = lstn THEN

outprt(pcb(prt) .dataprt,BYTE(ptr));
activate prt (ptr);

-'pcb(ptr).loc-con pcb(prt).loc-con;
pcb(prt).loc con ptr;
pcb(ptr).Pstate local;
pcb(ptr).sent FALSE;
pcb(ptr).prtQ :=0;
outprt(pcb(ptr) .cmd~yrt,DTR);
EXIT;

END IF;
ptr := ptr + 1
IF ptr > num-prts THEN

outprt(pcb(prt) .data_prt,code_quit);
EXIT;

END IF;
END LOOP;

L WHEN code_endprint =>
ptr := pcb(prt).loc con;
LOOP

IF pcb(ptr).is_print THEN
pcb(ptr).sent :=TRUE;
pcb(ptr).prtQ 0;
outprt(pcb(ptr) .cmd_prt,clr);
EXIT;

END IF;
ptr :=pcb(ptr).loc con;
EXIT WHEN ptr = prt;

END LOOP;
WHEN others =>

A 221

outprt(pcb(prt) .data_prt,code_cis);
END CASE;

END IF;
IF NOT pcb(prt).is_print THEN

IF pcb(prt).s prtQ /= 0 THEN
* bik :=pcb(prt).sprtQ;

ptr 0;
LOOP

*IF pcb(prt).ack(ptr) 1=BYTE(O) THEN
-~ EXIT;

ELSE
ptr :-ptr + 1;
IF ptr > max flag_ byt THEN

A give memory(blk);
-pcb(prt).s prtQ :=0;
EXIT;

- END IF;
END IF;

END LOOP;
END IF;
IF pcb(prt).s prtQ =0 THEN

inprt(pcb(prt) .stat_prt,byt);
IF otstbit(byt,DSR) THEN

get memory(blk);
IF bik /= 0 THEN

bytcnt :=518;
get trns(mem(blk).wnd'ADDRESS,

pcb(prt).data_prt , bytcnt); 2
IF bytcnt > 0 THEN

mem(blk).frm -len :=bytcnt - hdr-len;
mem(blk).spare :1
pcb(prt).s-prtQ := bik;
IF mem(blk).wnd(1) = BYTE'16#FF#) THEN

ptr := pcb(prt).loc-con; ..

LOOP
EXIT WHEN ptr = prt;
osetbit(pcb(prt) .ack(pcb(ptr).

fig byt),
pcb (ptr) . flg_ bit);

osetbit(pcb(ptr) .snd(pcb(prt).
fig byt),
pcb(prt) .flg bit);

ptr := pcb(ptr).loc-con;
END LOOP;

ELSE
ptr :=INTEGER(mem(blk).wnd(l));
IF ptr <= num-prts THEN

CASE pcb(ptr) .Pstate is
WHEN local ! lstn =>

osetbit(pcb(prt).

pcb(ptr).flg.lgbit);
pcb (tr) f lgbit)

222

osetbit (pcb (ptr).
snd(pcb(prt)..flg_byt),
pcb (prt) . flg bit);

IF pcb(ptr).Pstate = lstn
AND ptr /= prt THEN

4' activate prt (ptr); P

S.pcb(ptr).Pstate local;
pcb(ptr).loc con

pcb(prt).loc_con;
pcb(prt).loc -con :=ptr;

outprt (pcb (ptr).data prt,
nulibyt);

END IF;
WHEN others =>

* give memory(blk);
pcb(prt).s-prtQ 0;

END CASE;
ELSE

give memory(blk); 0
4,~r). -r Q =0

END IF;%
END IF; --if byt =FF

ELSE
- give memory(blk);

IF NOT pcb (prt) .isprint THEN
pcb(prt).time wait :

pcb (prt).time wait +1;
IF pcb (prt) .time -wait=threshold THEN

oPUT("1closing local connection",);
oput("1. time out.",); oNEW LINE;
IF pcb(prt).s_prtQ /=0 THEN

give memory(pcb (prt) .sprtQ);
pcb(prt).s prtQ 0;

END IF;
remove link(prt);
pcb cls(prt);

S.. END IF;
END IF;

S.. END IF;
END IF; --if bik /0

END IF; --tstbit DSR
END IF; --sprtQ = 0

ELSE
-~ IF pcb(prt).sent THEN

oPUT("lpcb(prt).sent is TRUE"); ONEWLINE;.4
found := FALSE;
FOR i IN 0. .max flag byt LOOP

IF pcb(prt).snd(i) 1 BYTE(0) THEN
found := TRUE;

END IF;
END LOOP;
IF NOT found THEN

S. 223

remove link(prt);
pcb(prt).Pstate :=istn;

END IF;
END IF;

END IF; --NOT is print
FOR i IN O..max flag byt LOOP

IF pcb(prt).snd(i) /= BYTt(O) THEN
FOR j IN O..7 LOOP

IF otstbit(pcb(prt) .srid(i) ,j) THEN
ptr := (8*i)+j;
IF pcb(ptr) .s prtQ /= 0 THEN

IF pcb(prt).is~print THEN
snd-data-to_printer(prt,

IF mm~pb~pt).s pcb(ptr) .sprtQ);
IFmmpbpr._prtQ).frm-ien=0 THEN *

ocirbit(pcb(ptr) .ack(pcb(prt).
fig byt) ,pcb(prt) .fig_bit);

ocirbit(pcb(prt) .srd(pcb(ptr).
fig byt) ,pcb(ptr) .flg_ bit);

END IF;
ELSE

amt:= rto-i1:1mem(pcb1cir).sdprtQ);

IF at <=518 THEN

sendlrbim(pcb(t .spbrt).

fig yt).dpcbptra);l i)
END IF;=0HE

oclrbit(pcb(ptr) .ack(pcb(prt).
fi byt ,pcb(prt).flg bit)

oclrbitb(prtcd(pcb.sn(pctr)
END fg byt),pcb(ptr .flg bit);

* END IF;
ELSE

oclrbit(pcb(ptr) .ack(pcb(prt) lby
pbptfgbt);bpt.l-i)

oclrbit(pcb(prt) .snd(pcb(ptr) gy)
f-y)pcb(ptr) fig~bit);

e. END IF;
END IF;

ENDD IF;
ENDIF

END LOOP;

END loc;

224

Ad

END locXfer; .

.' .

with locXfer, ntrpthd, assylib,lib, globall, tcpsend;
package body poller is
use locXfer, assylib;

--FILE NAME: POLLER.PKG
--PROCEDURES CONTAINED:
-- 1. POLL 5. FTP 9. PCBCLS
-- 2. SND DATATOPORT 6. LOC
-- 3. RLOG 7. GETPRTDAT
-- 4. REM INIT 8. LOCINIT"
--AUTHOR: ALEC YASINSAC
-- DATE: JAN 1985-
-- EXTERNAL REFERENCES:

--GLOBALl.SPC CONTAINS ALL GLOBAL VARIABLES AND TYPES.
--LIB.PKG WHICH CONTAINS OUR UTILITY PROCEDURES.
--BIT.PKG CONTAINS THE ADA BIT MANIPULATION ROUTINES ..%-IO. PKG ""

--INPUT: 1) PORT STATUS BYTE FOR EACH PORT
-- 2) IP ADDR FOR REMOTE LOGIN AND FTP DESTINATION
-- OUTPUT: 1) PORT NUMBER TO CALLED ROUTINES
-- COMPILER: THIS PACKAGE WAS CODED TO COMPILE ON JANUS/ADA

--UNDER CPM 86.
-- DESCRIPTION: •-

--POLLER CONTAINS THE PROCEDURE 'POLL' THE CONTROLLING
--PROGRAM OF THE CONCENTRATOR. IT CHECKS EACH PORT FOR

-ACTIVITY FROM ITS CORRESPONDING PORT AND PASSES
-- CONTROL TO THE APPROPRIATE SUBROUTINE BASED ON STATE.

--handshake signals betw concentratr and peripherial devices
--per gnd TxD RxD DTR DSR CHASIS

-p- - I I I I II -

-- I v A v .
-- I I I I I I,,.

gnd RxD TxD DSR DTR CHASIS
--concentrator

-- principals of communication Z-
--data data cntrl

-- from remote DTR, wait a short snd cntrl
time for DSR I--------------- -----

-- from concentrator DTR, wait a short snd cntrl
-- time for DSR

use assylib,lib,globall;

225

Z- , ftZ

pp

'44N
% prtaddr : INTEGER := INTEGER(16#0100#);

code-print : CONSTANT BYTE := BYTE(16#D4#);
codeendprint: CONSTANT BYTE := BYTE(16#F4#);
ndx : INTEGER; --index to pcb tables
predndx : INTEGER; --predecessor of ndx
val : BYTE; --input byte from port
ptr : INTEGER; --pointer index
loopthrshld : CONSTANT INTEGER :=200; .+..
hdr len : CONSTANT INTEGER := 6;. .l

--initialize rs232 UARTs
model : CONSTANT BYTE := BYTE(16#4E#);
mode2 : CONSTANT BYTE := BYTE(16#3E#);--3F 19.2K
commd : CONSTANT BYTE clr;--txEN, RxEN and RTS

loopcnt : INTEGER;
blk : INTEGER;
stat : INTEGER; --:'-':'
bytstat : BYTE;
byt : BYTE;

It
- - - - - - - - - - -- -

procedure rem init(prtnum:IN INTEGER;rem tcpaddr:array2)is
--EXTERNAL CALLS TO: 1. TCP OPEN, TCPABORT
-- 2. PCB-CLS

3. oTSTBIT
A 4. IOPORT, OUTPORT
--This procedure initiates a remote login to the address
--received from the port. The ip address is four bytes and
--are stored in an array to send to tcpopen. Buf in cnt
--counts how many bytes of the address has been received.
--If the connection has not been established within the
--number of cycles indicated by the global constant
--'threshold', then the port will be closed.

use globall, assylib, lib, tcpsend; -. 4..

rslt : BOOLEAN;

data : BYTE;
indx : INTEGER;

-e found : BOOLEAN;
loopcnt : INTEGER;

BEGIN --BEGIN PROCEDURE REMINIT.
IF pcb(prt_num).buf_in cnt = 0 THEN

inprt(pcb(prt_num).STAT_prt,data);--CHECK FOR CHR FM PRT.
if otstbit(data,DSR) then --THERE IS DATA TO BE READ.

.- outprt (pcb (prt num). cmd prt, DTR); -- ready to receive
loopcnt := 0;
pcb(prtnum).buf in cnt := 1;

226
P,-. %

-W-.

LOOP -GETALL YTESOF TE REOTE P ADRESS

EXIT~~~~~ WHE lopnt lophsh

EXIT tnu)bu~n-n WHE loopcnt =umloopthrshld

EXIrT WHEcb prttum) .statprtcdat5;
IFD ottitF;,~y)TE

intrtprtbb(prtnu).m) dtacrtat)
IF pcb(prtnum).buf in ipadtcb/rtum5bufinEnt

pcb(prtnum).bufa in clt pbprnm.ufi;n

EXI~pT WNum. pcb npt_)bu n~n :=re 5c~ d;

otptpcb(prt num cdprl)
IF ~pcb(prt_num).bufcn = inTHE

pcb~prpnum)Pstate)cls;

~~pcb(prt_num)i .cprd rea tpad,

tcp~popenuprtsnum,

IF NOT N13010-ok THEN
get tcb ndx(pcb(prt num).1yprt-ad,indx,found);
tcb(indx).prt num :=99;
pcb_cls(prt_num);

END IF;
END* IF;

END IF;

ELSE ~
IF pcb(prt_num) .time-wait>threshold THEN --TIMED OUT.

IF NOT pcb(prt num).sent THEN
tcpopen(prt num,

pcb(prtnum) .buf_in,
pcb (prt num) .act, -

p cb (prt num) .lprt ad,
pcb(prtnum) .sent);

IF NOT N13010_ok THEN
get tcb ndx(pcb(prt num) .1_r ad,ikndx, found);
tcb(indx).prt num :=99;
pcbcls(prt_num);
pcb(predndx).pcb_ptr := pcb(prt_num).pcb_ptr;

END IF;
IF NOT pcb(prt_num) .sent THEN

oPUT("'lsyn' packet not sent again"); oNEWLINE;
*pcb_cls(prt_num);v
* END IF;
* - pcb(prt_nun).tine wait :=0;
* ELSE

227

T. 1.

get tcbndx(pcb(prtnum).lprt ad,indx,found);
tcb(indx).prt num := 99;
pcb cls(prtnum);

END IF;
ELSE

pcb(prt num).time wait:--pcb(prtnum).time wait+l;
pc -ptnm-tmeat-pb -r --COUNT # OF LOOPS.

END IF;
END IF;
END reminit;

%--

procedure ftp(prtnum: in integer) is
--CURRENT: 19 May 86
--AUTHOR: ALEC YASINSAC APRIL 86
--DESCRIPTION: FTP IS PASSED CONTROL WHEN PORT 'PORT NUM' IS _-

-- POLLED IN STATE FTP. AT THIS STAGE, A COMMAND CONNECTION
-- HAS BEEN ESTABLISHED BETWEEN THE Z-100 AND THE REMOTE
-- SITE. THREE LEVELS OF COMMUNICATION ARE POSSIBLE BOTH
-- TO AND FROM A Z-100:
-- 1. CONTROL CODES.
-- 2. DATA THRU THE SECONDARY OR DATA CONNECTION.
-- 3. COMMANDS/REPLYS THRU THE FTP CMD CONNECTION.
-- CONTROL CODES FROM THE Z-100 ARE CHECKED FIRST. THEN
-- ANY DATA FROM THE Z-100 IS ACCEPTED. DATA WAITING FOR
S-- THE Z-100 IS THEN SENT.

p7

5 use tcpsend, assylib, globall;
type portrec is record

typ tran : byte;
sock: socket rec; .'

end record;
outrec: portrec;
code_addr: constant byte :- byte(16#el#); --a 225
code-cmd: constant byte := byte(16#e3#); --c 227
code-data: constant byte := byte(16#e4#); --d 228
code_qempty: constant byte := byte(16#e5#); --e 229
code_getcpad: constant byte := byte(16#e7#);--init tcb entry
code check replyq: constant byte := byte(16#e8#);--h 232
code-more: constant byte := byte(16#ed#); --m more data. 237
code_open: constant byte := byte(16#ef#); --o 239
code closdata: constant byte := byte(16#fl#);--q 241
code-reply: constant byte := byte(16#f2#); --r 242

codedprtstat: constant byte := byte(16#f4#); --t 244
bytstat: byte; p.
len, ndx, holdq, inxl, i: integer;
ind: integer; --stub.
found, sent: boolean;
byt arr: array (1..512) of byte; .'..

begin '

228

!-

- 'qt~~~~~.. "4 , .P- -.

-.. - , ,'.. ,- - ' . .- ,. - -' -'.' . -. .' " ' . ' 4 - :- - - - _ . - -- . ..
-- -

-" -: ' - _°,--
,

-- IS THERE A CNTL CHAR FROM THE Z-100?
inprt(pcb(prt_num).stat_prt, bytstat);
if otstbit(bytstat,rxrdy) then --got a control char

inprt(pcb(prtnum) .data_prt,byt);
case byt is

when codeftp => --TRYING TO RECONNECT.
pcbabort(prt num);

when code check replyq =>
if pcb(prt num).s prtq > 0 then

outprt (pcb (prt_num) . dataprt,
code check replyq);

else
outprt(pcb(prt_num) .data_.prt,code_qempty);

end if;
when code dprtstat => --CHECK STATUS OF DATA PORT.

if pcb(prt_num).sec_act then
outprt(pcb(prt num) .data_prt, code_open);

else
outprt(pcb(prt_num) .dataprt,codeclosdata);

end if;
when codegetcpad =>

if pcb(prtnum).sec act then null;

--WILL SEND ACTIVE ADDRESS.
--outprt(pcb(prtnum) .data_prt,codeopen);

else
tcpopen(prt_num,

pcb(prt num) .bufin,
0-A false,

pcb(prt_num) . s_prtad,
pcb(prt num) .sent);

end if;
out rec.typtran := code addr;
out-rec.sock.ipad locipad;
out-rec.sock.tcp_ad pcb(prtnum).s_prt_ad;
outprt(pcb(prt num).data prt,code getcpad);
for i in 1..30 loop

len := 7;
send trns(out rec'address,

pcb(prtnum) .dataprt,len);
exit when len = 0;

end loop;
when code-open =>--ASKING TO OPEN DATA CONNECTION.

null;
when code-abort =>

outprt(pcb(prt_num) .data_prt,codeabort);
pcb_abort(prt num);

when code closdata =>
if pcb(prt_num).sec act then

tcp close(pcb(prt num) .s_prt_ad);
pcb(prt num).sec act false;

end if;
when code cls =>

229

O-

outprt (pcb (prt num). dataprt, code_cls);
tcp-close(pcb(prt_num).._prt_ad);
if pcb(prt_num).sec act then

tcp close(pcb(prtnum) .s_prt_ad);
end if;
pcb(prt num).sent FALSE;
pcb(prt num).Pstate := clsing; %

when others => null;
end case;

else -- THERE IS NOT A CONTROL CHARACTER FROM THE Z-100.
--IS THERE DATA OR A COMMAND FROM THE Z-100?if otstbit(bytstat,dsr) then--SOMETHING FROM Z_100.

if used blk<max mem blk then
get memory(inxl); --GET A NEW PACKET INDEX.
len--= 513;
get_trns(mem(inxl) .urg(2) 'address,

pcb(prtnum).dataprt, len);--STOR IN PACKET.
if len > 0 then

if mem(inxl).urg(2) = code cmd then
--SEND CMD FM Z-100 TO REM OVER CMD LINE.
@oput("cmd - ;
@for i in 1.4 loop

@oput(integer(mem(inxl) .data(i)));
@end loop; onew line;
tcpsend(inxl, len - 1,

pcb(prt num).l_prt ad, sent);
else --NOT A COMMAND FROM THE Z-100.

if mem(inxl).urg(2) = code data then
--SEND DATA FM Z TO REM-OVER DATA CONN.
if pcb(prtnum).sec act then

tcp_send(inxl, len - 1,
pcb(prt num).s_prtad, sent);

else--TRIED DATA W/ NO DATA CONNECTION.
givememory(inxl);

end if;
else --BYTES FROM Z-100 NOT IDENTIFIED.MAY

--MEAN USER HAS REBOOTED SO DSR IS HIGH
--THOUGH NO DATA IS ACTUALLY BEING SENT.
givememory (inx);
pcb(prtnum).time wait

pcb(prt num).time wait + 1;
if pcb(prtnum).time wait > 100 then

outprt(pcb(prt_num) .dataprt,
codeabort);

pcb_abort(prt_num);
end if;

end if;--ENDS IF BYTES RECEIVED ARE DATA.
end if; --ENDS IF COMMAND.

else

give memory(inxl); --NO DATA RECEIVED
end if;

else --ALL MEMORY BLOCKS ARE IN USE.

230

.- " .,.... • ... >....'..?" a.i .

.1'

null; -- CANNOT GET DATA FROM THE Z-100.
end if; -- END IF NOT ALL MEMORY BLOCKS IN USE.

else
null; --NOTHING WAITING. NO ACTION REQUIRED.

end if; --END IF Z-100 TRYING TO SEND DATA..

-- IS THERE DATA FOR THE Z-100?
if pcb(prt_num).s_prtq > 0 then-- FTP DATA FOR Z-100.

inxl := pcb(prtnum).s_prtQ;
mem(inxl).urg(2) := code data;
len := mem(inxl).frmlen + 1;
send_trns(mem(inxl) .urg(2) 'ADDRESS,

pcb(prt_num).data_prt,len);
IF len = 0 then

pcb (prt_-num) . sprtQ memmanagtbl (inxl);
give_memory (inxl);

END IF;
else -- NO DATA IS WAITING FROM DATA CONNECTION.

-- if not pcb(prtnum).sec act then
-- IS THERE A REPLY FOR THE Z-100?

if pcb(prt_num).prtq /= 0 then -- FTP REPLY.
inxl := pcb(prtnum).prtQ;
mem(inxl).urg(2) := codereply;
len := mem(inxl).frm len + 1;
send trns(mem(inxl) .urg(2) 'ADDRESS,

pcb(prtnum) .data_prt, len);
IF len = 0 THEN

pcb(prtnum) .prtQ memmanagtbl(inxl)*; -4
givememory(inxl);

end if; --END IF LEN = 0.
end if; --END IF PRTQ /= 0.

--end if; -- END IF NOT SEC ACT.
end if; -- END IF SPRTQ /= 0.

end if;--ENDS IF THERE IS A CONTROL CODE FROM THE Z-100.
end ftp;

procedure rlog(prt num: in integer) is
--AUTHOR: ALEC YASINSAC --DATE: FEB 86
--INPUT: 1. PRT NUM IS THE PORT NUMBER CURRENTLY BEING V-.4
-- PROCESSED AND 0 <= PRT NUM <= 23
--OUTPUT: 1. FIELDS MODIFIED IN THE GLOBAL TABLE PCB.
-- 2. FIELDS MODIFIED IN THE GLOBAL TABLE TCB.
--EXTERNAL MODULES CALLED: 1. GIVE MEMORY

2. GETMEMORY
-- 3. TCPSND

4. TCP ABORT
5. CONV HEXARR INT

-- 6. TST BIT -

-- DESCRIPTION: RLOG IS PASSED CONTROL BY POLLER WHEN A PORT
-- WITH PORT NUMBER 'PRT NUM' IS POLLED AND IS IN THE RLOG

231

-", ". *.. *.*.*.- .-;*.,.~ ~

-- STATE (WHICH MEANS A REMOTE CONNECTION HAS BEEN ESTAB-
-- LISHED). RLOG WILL THEN SEND DATA WAITING FOR THE PORT
-- AND POLL THE PORT FOR DATA TO THE REMOTE HOST. THE
-- NUMBER OF CHARS IN A PACKET FOR THE PORT IS STORED IN
-- THE FRMLEN FIELD OF THE MEMORY BLK.

use lib, globall, assylib, tcpsend;
arr4isl: array4;
max used blk : CONSTANT INTEGER

max mem blk - 1; --leave one spare
rcvRdy: CONSTANT integer := 1;
bytinp, bytstat: byte;
next, inp, status, ndx: integer;
found,sent: BOOLEAN; -

ptr: integer;

BEGIN
--WILL PROCESS DATA FROM Z-100 THEN DATA FROM ETHERNET

inprt(pcb(prtnum) .stat_prt, bytstat);

if otstbit(bytstat,DSR) then -- INFORMATION FROM Z-100.
IF used blk < maxused_blk THENloopcnt :=0 ; .

ptr :=i;..

get memory (next);
IF next /= 0 THEN

mem(next).frm len := 512;
get_trns(mem(next) .data(l) 'ADDRESS,

pcb (prtnum) dataprt,
mem(next) .frm len);

IF mem(next).frm-len > 0 THEN
tcpsend(next, mem(next).frm len,

pcb (prtnum) .l_prtad, sent);
IF NOT N13010 ok THEN

gettcbndx(pcb(prt num). l_prtad,
ndx, found);

tcb cls(ndx) ; .

pcbcls(prtnum); .
pcb(predndx) .pcbptr =

END IF; pcb (prt num). pcbptr;
. END IF;.

ELSE
give memory(next);

-pcb(prtnum).time wait
m pcb(prt_num).time wait + 1;

IF pcb(prtnum).timewait = threshold THEN
tcpclose(pcb(prt_num) .l_prtad);
pcb(prt_num).sent := FALSE;
pcb(prt_num).Pstate := clsing;

END IF;
END IF;

END IF;
END IF;

232

% %N ,

%4

- fl - % -. ~ ~ 4 -~%

ELSE IF otstbit(bytstat,RxRdy) THEN
inprt(pcb(prt num).data_prt, bytinp);
case bytinp is

when code abort => pcb_abort(prtnum);
when code status => give_status(prtnum);
when code cls=>tcp close(pcb(prt num).l ptad);

_prt

4 pcb(prt-num).sent :=FALSE;
pcb(prt num).Pstate := cising; %

when code Arlog =>outprt(pcb(prt_num) .data_prt,
codeArlog);

when others => null;

end case;
END IF;

Pend if; --END oTSTBIT. END PROCESSING DATA FROM A Z-100.
IF pcb(prtnum).prtQ > 0 THEN

next :=pcb(prt num).prtQ;
send trns(mem(next) .data(l) 'ADDRESS,

pcb (prt num) .data pt
mem(next) .frm len);

IF mem(next).frm len =0 THEN 4

pcb(prt_num).prtQ :=mem-manag-tbl(next);
give memory (next);

END IF;
END IF;

END riog;

BEGIN 4'*4

FOR i IN 0..numprts LOOP :44

pcb(i).prtQ := 0;
pcb(i).s_prtQ := 0;
pcb(i).sent :=FALSE;
pcb(i).time wait :=0;
pcb(i).act :=TRUE;
pcb(i).sec_act := FALSE;

END LOOP;
FOR i in 1. .max mem bik I LOOP

mem manag_tbl(i) :=i+ 1;
END LOOP;

4.mem manag tbl(max mem bik) 0;
used bik 0;
free bik 1;
FOR I IN 0..max tcb LOOP

tcb(i).prt_num :=99;
tcb(i).retrnsQ :=0;

END LOOP;
rcv-wnd(l) :=BYTE(2);
rcv wnd(2) :=BYTE(0);

END initialize mem;

233
%:A.

proceure pllZi

poue lib, tcsngoal

rcvRdy :CONSTANT INTEGER-:= 1;06
loops to poll: CONSTANT INTEGER :=1000; .

4 bytcode, bytstat: byte;
ndx,indx,inx :INTEGER;
pred ndx : INTEGER;
loop cnt, len: INTEGER;

*found : BOOLEAN;
rlog tcp : array2;
ftp tcp : array2;
pntr,qadd :INTEGER;
no_active : BOOLEAN;

A begin
rlog-tcp(l) :=byte(O);
rlogtcp(2) :=byte(16#17#);
ftp tcp(1) :=byte(0);
ftp tcp(2) :=byte(16#15#);
loop-cnt := 0;
loop

pred -ndx := pcb head;
ndx := pcb (pcb head) .pcbptr;
loop

EXIT WHEN ndx > num_prts;
case ppb(ndx) .pstate is

when clsing =>
if pcb(ndx).sec act then

get tcb ndx (pcb (ndx) .syprt ad,inx, found);
tcb cls(inx) ;--CLEAR RETRANSMISSION QUE.
tcp-close(pcb(ndx).sprt_ad); --SEND FIN.
while pcb(ndx).sprtq /- 0

loop--DELETE DATA ON SECOND CONNECTION.
qadd: =mem manag tbl (pcb (ndx) . sprtq);
give memory(pcb(ndx).s_prtq);
pcb(ndx).s prtq := qadd;

end loop;
pcb(ndx).sec act :=FALSE;

else
IF pcb(ndx).sent THEN

pcb(ndx) .time wait:
4' pcb(ndx).time wait + 1;

IF pcb (ndx) .time wait=threshold THEN
get-tcb ndx (pcb (ndx) .1_prt_ad,

tcb cls(indx); indx,found);

V pcb_cls(ndx);
pcb(pred_ndx) .pcb_ptr :

END IF;pcb(ndx) .pcbptr;

234 4

ELSE
if pcb(ndx).prtq =0 then

tcpclose(pcb(ndx).l_prt_ad);
pcb(ndx).sent := TRUE;
pcb(ndx).time-wait := 0;

else
pntr :=pcb(ndx) .prtQ;
len :=mem(pntr).frm len;
send trns(mem(pntr) .data(l) 'ADDRESS,

pcb(ndx).data_prt, len);
4 ~if len = 0 then .-

pcb(ndx).prtQ
mem manag tbl(pntr);

4, give memory(pntr);
else d

mem(pntr) .spare
if mm~ptr)mem(pntr) .spare + 1;
if mm~ptr)spare>=threshold then
pcb(ndx).prtQ :

mem -manag-tbl(pntr);
give -memory (pntr);

end if;
end if;

end if;
END IF;. 4%

end if; --ENDS IF SECACT.
when cls =>

pcb(pred_ndx).pcbptr :=pcb(ndx).pcb_ptr;
q when lstn=> pcb(pred'ndx) .pcb_ptr :=

pcb (ndx) .pcb_ptr;
when r mnit => rem init(ndx,rlog tcp);

*when rlogn => rlog(ndx);
when f mnit => rem init(ndx,ftp-tcp);
when rftp => f tp (ndx) ;

4when 1 mnit => loc init(ndx);
when local => loc(ridx);
when others => pcb(ndx) .Pstate cbs;

end case;

pred ndx := ndx;
ndx :=pcb(ndx).pcbptr;

end loop;

predndx := pcb head;
ndx := pcb(pcb -head) .pcbptr; Y~
loop_cnt := loop cnt + 1;

IF loop cnt = loops to poll THEN -

no active := TRUE;I FOR i IN 0..num prts LOOP
IF pcb(i).PstEate=cbs OR pcb(i).Pstate=lstn THEN A

inprt(pcb(i).stat~pt bytstat);

235

if otstit bts a. '..cvd the

inprt(pcb(i) .dataprt, bytcode); V

CASE bytcode IS
WHEN code_-Arlog =>

oPUT("lcode -Arlog received"); .

oNEW LINE;
pcb(i).Pstate := r init;
outprt(pcb(i) .dataprt,bytcode);
activate prt(i);

WHEN code-ftp =
oPUT("lcode -ftp received");
oNEWLINE;
-pcb(i).Pstate := f mnit;
outprt(pcb(i) .dataprt,bytcode); %
activateprt(i);

WHEN code loc =>
oPUT(1"code -lc received");
oNEWLINE;
pcb(i).Pstate := 1 init;
outprt (pcb (i).*data_prt, bytcode);
activate prt(i);

WHEN codePriog ->
pcb(i).Pstate := r-init;
outprt (pcb (i).data prt, bytcode);
activate prt(i);

WHEN code lstn => .-

pcb(i).Pstate :- lstn;
outprt(pcb(i) .datayprt,bytcode);

WHEN code status =

IF pcb(i) .Pstate = lstn THEN
,4 outprt (pcb (1).dataprt,

code status) ;
EDgive status(i);
EDIF;-

WHEN code-reqPrt -

outprt (pcb Ci) .data prt, bytcode);
outprt(pcb(i) .data prt,BYTE(i));

@WHEN code quit =>
- @oput("'SYSTEM ABORTED BY CONSOLE");

@ return;
WHEN code cbs ->---to close a listen

pcb cls(i);
WHEN code print =

ptr :=0;
LOOP

IF pcb(ptr).is-print AND
pcb (ptr) .Pstate =lstn THEN
outprt(pcb(i) .data_prt,

BYTE (ptr)) ; v

activate prt (ptr);

pcb(ptr).loc con :-i;

236

S Ad

.Y•W~ . ' I* . j bWI~ 1-. k -- u* . J .'. ~ - . Ul* U2 .- - ' . -' ..

¢,. :.

r%4

pcb(i).loccon := ptr;
pcb(ptr) .Pstate := local;
pcb(i).Pstate local; ___

pcb(ptr).sent := FALSE;
EXIT;

END IF;
ptr := ptr + 1; " -
IF ptr > numprts THEN

outprt(pcb(i).data_prt,
codequit);

EXIT;
END IF;

END LOOP;
WHEN others =>--BAD CODE RECEIVED.

outprt(pcb(i).data_prt,code_cls);
END CASE; I___

END IF;
IF pcb(i).s prtQ /= 0 THEN

blk := pcb(i) .s_prtQ;
mem(blk).frm len

arr to int(mem(blk).urg)+hdr len;
send trns(mem (blk).wnd(l)'ADDRESS,

pcb(i).data prt,
mem(blk).frmlen);

IF mem(blk).frm len=O THEN
give memory(blk);
pcb(i).s prtQ := 0; -- '

END IF; 4
END IF;

ELSE
IF pcb(i).Pstate = rlogn OR pcb(i).Pstate

= rftp THEN
checkretrnsQ (pcb (i) .l_prtad);

END IF;
END IF;
IF pcb(i).Pstate /= cls AND NOT pcb(i).is_print

THEN
no active := FALSE;

END IF;
END LOOP;
IF no active THEN

initializemem;
END IF;
loop-cnt 0;

END IF;
end loop;
end poll; .- 7

begin --INITIALIZATION FOR CONTROLLING PACKAGE.
pcb(pcbhead).pcb ptr := pcb head;
FOR i IN O..num_prts LOOP

pcb(i).data_prt i * 4 + (32 * (i/8)) + 256;

, .5

237

.'9

pcb(i).stat-prt pcb(i) .data prt + 1;
pcb(i).cmd_prt pcb(i) .stat -prt + 2;
CASE i is --list printers here

WHEN 0 => pcb(i).is print :=TRUE;
WHEN others => pcb(i).is_print :=FALSE;

END CASE;
outprt (pcb (i).stat prtil, model);
outprt(pcb(i) .statprtIl,mode2);
outprt(pcb(i) .cmdprt,commd);

IF pcb(i).is print THEN

ELSE
pcb(i).Pstate :=cis;
outprt (pcb ~i) .data prt, code cis);

END IF;
pcb(i).buf in cnt := 0;
FOR j IN 0. .max flag byt LOOP

pcb (i) .snd (j) BYTE (0)
pcb (i) .ack (j) :=BYTE (0);

END LOOP;
,~

*pcb(i).flg-byt i/8;
pcb(i).flg_,bit i REM 8;

END LOOP;

'-/--initialize memory
initialize mem;N --the following initialization is the internet protocol--address assigned to the aegis system and listed in the

--VAX UNIX local host table for 'npscs-aegis'
loc ip ad(l) byte(16#cO#); --decimal equivalent: 192
locipad(2) : byte(16#O9#); - 9
locipad():=byte(16#4#); 200
loc ip ad(4) byte(16#c8#); 4-20

eth.type_pck(l) :=BYTE(8) ;--address resolution protocol
eth.typepck(2) :=BYTE(6);--see RFC 826, Ntwk Info Cntr
eth.ar hrd(l) :=BYTE(O);It~rhd2 _YE~)

eth.ar_pro(l) :=BYTE(8);
S-.

-. 5eth.ar len(2) :BYTE(4);
eth.nuI := BYTE(0);
eth.fm ip :c bcip ad;

FOR i IN 1. .max-ad LOOP
ad-tbl(i).update :=0;

238

-,7 Z

END LOOP;
ntrpt := disable;
outprt (able reg, disable);
inprt(stat_reg,val);
perfcmd (gooff);
perf cmd(reset);
outprt(icwl prt,icwl);
outprt (icw2_prt, icw2);
outprt(icw4_prt,icw4);
outprt (ocw prt, ocw);

ASM sti; --set interrupt-enable flag
perf cmd(go on);
perf cmd(rcv stat);
ptr:=1.
LOOP

inprt(ntrpt reg,val);
EXIT WHEN otstbit(val,sba);
IF otstbit(val,srf) THEN

inprt(stat -reg,val);
mem(l).data(ptr) val;
ptr := ptr + 1;

END IF;
END LOOP;
inprt (stat reg, val);
FOR i IN 1. .6 LOOP

loc eth ad(i) :=mem(l).data(i+3);
END LOO5P; oNEWLINE;
oPUT ("RUNNING")T;
oNEWLINE;
eth.fm eth ad :=lc eth ad;
eth.fm eth loc eth ad;
ad tbl(max ad) .eth ad loc b eth ad;
ad tbl(max ad).ip ad loc ipad;L
ad tbl(max ad) .update :=INTfEGER(16#7FFF#);
perfcmd(cl_insert mode);
ntrpt :=rcv_pck;
outprt (able reg, rcvpck);

poll;
perfcmd(reset);

end poller;

239

BATCH FILE IN COMPILATION ORDER
V The following is the contents of the batch (.bat -or .sub)file used to compile the preceeding programs.

era globall.sym
era assylib.sym
era lib.sym
era ntrpthd.sym

era convblk.sym
era pcbrec.sym
era tcprec.sym
era iprec.sym
era ethrec.sym
era rcv.symIera ethsend.sym
era ipsend.sym
era tcpsend.sym
era locxfer.sym
janus globall.spc
janus assylib.spc
janus lib.spc
janus ntrpthd.spc
janus convblk.spc
janus pcbrec.spc
janus tcprec.spc

N
janus iprec.spc

-janus ethrec.spc
*janus rcv.spc

janus ethsend.spc
Janus ise.4.spjanus icpsend.spc

janus locxfer.spc
jasm86 assylib.asm
janus li~k

A jasm86 ntrpthd. asm
jasm86 convblk.asm
janus pcbrec.pkg

-~janus tcprec.pkg
janus iprec.pkg
janus ethrec.pkg
janus rcv.pkg
jau ehen4k

janus etsend.pkgjau psnAk
janus tcpsend.pkg0"
janus locxfer.pkg
janus poller.pkg
jlink poller/re

240

ND e

APPENDIX G

LISTING OF Z-100 TELNET PROGRAMS

--PACKAGE: TELNET. PKG
--AUTHOR: ALEC YASINSAC
--DATE: DEC 1985
--SYSTEM NAME: TELNET
--EXTERNAL REFERENCES: 1. GET ADDR
-- INPUT: HOSTS. FIL

--DESCRIPTION:
-- TELNET ALLOWS A USER AT A Z-100 TO UTILIZE THE MULTIBUS
-- SYSTEM AND ETHERNET TO BECOME A REMOTE TERMINAL TO OTHER
-- HOSTS ON ETHERNET. THIS PROGRAM SENDS A CONTROL
-- CHARACTER TO ITS DESIGNATED OUTPUT PORT FOR THE 8612
-- CONCENTRATOR THAT IDENTIFIES THE FUNCTION TO BE
-- PERFORMED. THIS PROGRAM ALSO DETERMINES THE INTERNET
-- PROTOCOL ADDRESS AND FORWARDS THAT INFORMATION TO THE
-- 8612. THE 8612 PERFORMS ALL THE TELECOMMUNICATION.
-- PROCESSES NECESSARY TO NAVIGATE PROTOCOLS. TELNET
-- MERELY PASSES DATA BETWEEN THE USER AND THE 8612. ONCE
-- LOGGED ON TO THE REMOTE HOST, THE Z-100 USER CAN
-- NAVIGATE ANY HOST ACCESSIBLE TO THE REMOTE HOST. FOR
-- EXAMPLE, A USER CAN LOG ON TO THE VAX UNIX SYSTEM AND
-- FROM THERE LOG ON TO NODES IN ARPANET WHICH IS SERVICED
-- BY VAX UNIX.

with bit, asmlib, getip, io;
procedure telnet is

use bit, asmlib, get ip, io;
bytaddr: array (1..4) of byte;
addr: array (1..4) of integer; .r.°,
ocwl_reg: constant integer := (16#00f3#);
ocwl: constant byte := byte (16#aa#);
auxprt: constant integer := (16#00ec#);
term: constant byte := byte(16#ld#); --^]
code cls: constant byte := byte(16#c3#); -- C
code-abort: constant byte := byte(16#cl#); --A
code-status: constant byte := byte(16#d3#); --S
code-arlog: constant byte := byte(16#d2#); --R
dat: constant integer := (16#ec#);
stat: constant integer := (16#ed#);
cmd: constant integer := (16#ef#);
cir: constant byte := byte(16#25#); - -
DSR: constant integer := 7;
DTR: constant byte :- byte(16#27#);

241

IN RxRdy: constant integer 1;

rs232_delay: constant integer :=100;
hosts, auxfile: file;
ch: character;
outcnt, len, cnt, ptr: integer;
datstrg: array(l..512) of byte;
okc, cnt_exit: BOOLEAN;
org ocwl, byt, data, charbyt: BYTE;

function checkterm return boolean is
use asmlib, io;
byt: byte;

begin
if keypress() then
getch(byt);I case byt is

when byte(16#ld#) => return true;
when others => null;

end case;
return false;

end if; --END IF KEYPRESS.
end checkterm;

-- - - - - - - - - -- - - - - - - - - -- - - - - - - - - -

begin --begin TELNET
inport(ocwl reg,org ocwl);
outport (ocwl reg, ocwl); K

outport (cmd, clr);
new line; new line; %K

clrscreen;A-J
put ("WELCOME TO THE MULTIUSER SYSTEM TELNET PROCESS.");
new line;
open(hosts,"hosts.fil",read-only);
if ioresult = 255 then

put("1FILE 'HOSTS.FIL' DOES NOT EXIST.");
ELSE

if end -of file (hosts) then
put ("NO DATA IN FILE 'HOSTS.FIL'."1);
close(hosts);

else
close (hosts);
get addr(addr(l) ,addr(2) ,addr(3) ,addr(4));
if ((addr(l) = 0) and (addr(2) = 0) and

(addr(3) = 0) and (addr(4) = 0)) then
new line;--BY CONVENTION, telnet RECOGNIZES ANvo

new line;--IP ADDR OF ZERO AS USER TERMINATION.

esput("1TELNET TERMINATED BY USER.");2

for i in 1..4 loop

242 A

N! d

bytaddr(i) byte(addr(i));
end loop;
open(auxfile, "aux" ,read write);
write(auxfile,code_arlog);
outport(auxprt,code arlog);
PUT (" CONNECTING WITH CONCENTRATOR.1) ;NEWLINE; **

loop
inport (stat, data);
IF tstbit (INTEGER (data) ,RxRdy) THEN

clrscreen;
PUT("ltrying ... 1); NEWLINE;
inport (dat, data);
case data is

when code arlog => exit;
.when code cis =>

write (auxfile, code arlog);
when others=>write(auxfile,code_arlog);

d end case;
4 if checkterm() then

return;
end if;

END IF;
end loop;
close(auxfile);
loop

len :=4;
send tins (bytaddr'address,dat, len);
EXIT-WHEN len = 0;
if checkterm() then -

return;
end if;

end loop;
outport(cmd,clr);
outcnt := 0;
LOOP --MAIN LOOP SENDING DATA BTWN HOST & USER. -.

IF keypress() AND outcnt = 0 THEN ..

--OUTCNT = 0 MEANS LAST CHAR WAS SENT.
getch(charbyt);
EXIT WHEN charbyt =term;

outcnt 1;=41;
END IF;
IF outcnt = 1 THEN

inport (stat, data);
IF NOT tstbit(INTEGER(data),DSR) THEN -

send_tins (charbyt'ADDRESS ,dat, outcnt);

--OUTCNT WILL BE 0 IF SEND SUCCESSFUL.
w

END IF; ~
END IF;
inport(stat,data);
IF tstbit (INTEGER(data) ,RxRdy) THEN

inport (dat, data);
EXIT WHEN data =code-cls;

243

%,WV9

END IF;
inport (stat, data);
IF tstbit(INTEGER(data),DSR) THEN x..

-ptr :=512;
get_tins (datstrg 'ADDRESS, dat, ptr);
FOR i IN 1..ptr LOOP

prntdata(datstrg(i));
END LOOP;

END IF;
END LOOP;
end if; -- ENDS 'IF ADDR = 0

end if; -- ENDS I IF ENDOFFILE(HOSTS)v
end if; --ENDS 'IF IORESULT =255

new__line;
outport(dat,code_cis);

A outport(ocwl_reg,org_ocwl); --restore state
end telnet;

244

APPENDIX H

D"...

LISTING OF Z-100 FTP PROGRAMS
S. .-..

with typpkg;
package funcs is I

use typpkg;

function checkterm return boolean;
function get_opt return cmd typ; '..

function getpassword return string;
function get_username return string;
function getportnum return string;
function get_filename return string;
function getparameter(opt:in cmd-typ) return string;

end funcs;
I

with typpkg, strlib, io, bit, asmlib;
package body funcs is
use typpkg, strlib, io, bit, asmlib;

function checkterm return boolean. is
use asmlib, io;
byt: byte;

begin
if keypress() then
@put("got keypress"); new-line; --stub.
getch(byt);
case byt is
when byte(16#ld#) => return true;
when others => null;

end case;
return false;

end if; --END IF KEYPRESS.
end checkterm;

function getopt return cmd_typ is
--AUTHOR: ALEC YASINSAC APRIL 86
--DESCRIPTION: GET OPTION DISPLAYS THE POSSIBLE FTP OPTION
-- SELECTIONS AND PROMPTS THE USER TO SELECT AN OPTION.
-- THE OPTION IS RETURNED AS THE ONLY OUTPUT.
--EXTERNAL CALLS TO: 1. IO.GET LINE. .
use io;
str: string;

245
% 5.

% "

chr, junk: character; "
valid: boolean;

begin
loopvalid := true; new line;

put(" ENTER THE FIRST CHARACTER OF THE");
put(" OPTION YOU PREFER."); new line;
put (" <S>END A FILE "); new_line;
put(" <G>ET A FILE "); newline;put("o <D>ELETE A FILE "; new line; :-
put(" <L>IST THE WORKING DIRECTORY ");
put(" (AS will stop scroll."); new line;
put(" <C>HANGE THE WORKING DIRECTORY");newline;
put(" <H>ELP ").; new line;
put (" <Q>UIT FTP "); new-line;
loop

put("OPTION: ");
str := get lineo;
exit when (length(str) > 0);

end loop; .,
chr := str(l);
put(" ")
case chr is
when 'S'! 's' => put("SEND"); new line;

return stor;
when 'G'!'g' => put("GET"); newline;

return retr;
when 'D'!d' => puf("DELETE"); newline;

return dele;
when 'L'!''' => put("LIS'); new line;

return nlst;
when 'C'! 'c' => put("CHANGE"); new line;

return cwd;
when 'H'!'h' => put("HELP"); new line;

return help;
when 'Q'! 'q' => put("QUIT"); newline;

return quit;
when others => valid := false; new line;

put("THE ONLY VALID OPTIONS ARE: ");
put("'S', 'G', 'D', 'L', 'C', 'H' AND 'Q'.");
newline;newline; put ("PLEASE REENTER.") ;newline;

end case;
exit when valid;

end loop;
end getopt;

function get password return string is
--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--DESCRIPTION: THIS PROCEDURE PROMPTS THE USER TO ENTER
-- A VALID PASSWORD AND RETURNS THE ENTERED STRING.
--EXTERNAL CALLS TO: 1. IO.GET LINE.-S

246

dN: N.N
• .°.

N' - 9.

d%

-- 2. STRLIB.LENGTH.

use asmlib, io, strlib;
goodpw: boolean;
i : integer;
byt: byte;

9. pw: string;
9 cntl rt brack: constant byte byte(16#ld#);

begin
loop

goodpw := true;
put ("ENTER YOUR PASSWORD ");
put ("[no special characters].");
new line;
put(1"PASSWORD: ");
pw :=f";

1 =0;
9. loop --GET THE PASSWORD FROM THE CONSOLE."-" ~i := + 1; "'" "

byt := no echoo;
case byt is

when byte(16#od#) => :.-- .
if (i > 1) then

exit; '-9.
else goodpw := false;

exit;
end if; 4

when byte(65)..byte(90) => --A..Z
pw:= insert(pw,char tostr(byte to chr(byt)),l);

when byte(97)..byte(122) => --a..z
pw:= insert(pw,char tostr(bytetochr(byt)),i);

when cntl rt brack =>
return "";•

when others => goodpw false;
exit;

end case;
end loop; new line;--END ONE TRY AT ENTERING A PASSWORD.
exit when goodpw;

end loop;
return pw;

end get password;

function get username return string is 5 9. ,

--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
S--DESCRIPTION: THIS PROCEDURE PROMPTS THE USER TO ENTER
-- A VALID USER ID AND RETURNS THE ENTERED STRING.
--EXTERNAL CALLS TO: 1. IO.GET LINE.

2. STRLIB.LENGTH. %

use io, asmlib, strlib;
goodname: boolean;

247

II ,--4
, ..1

username: string;
byt: byte;
cntl rt brack: constant byte byte(16#ld#);

begin
loop
goodname := true;
loop
put("USER NAME: ");
username := get line();
exit when (length(username) > 0);

end loop;
for i in l..length(username) loop

" byt := conv byt(username(i));
case byt is

when byte(65)..byte(90) => A-->Z
null;

when byte(97)..byte(122) => -- a-->z
*l null;
when cntl rt brack =>

return "";
when others => goodname := false;

exit;
end case;

end 'loop;
exit when goodname;

end loop;
return username;

end getusername;

function getportnum return string is

--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--DESCRIPTION: THIS PROC ISSUES REQUEST TO THE 8612 ASKING
- - FOR A NEW TCB TABLE TO BE EST AND NEW PORT NUMBER
-- ASSIGNED. GET PORTNUM THEN READS NEW PORT NUMBER AND
-- CONVERTS IT INTO A STRING THAT CAN BE TRANSMITTED AS
-- THE PARAMETER TO THE FTP PORT CMD.
--EXTERNAL CALLS TO: 1. BIT.OUTPORT/TSTBIT/INPORT.
-- 2. ASMB.BYTE TO CHAR.
use bit, strlib, asmlib, typpkg;
byt: byte;
byt_arr: bytearray;
int, i, j, timer, amt : integer;
portnum, coma, str: string;

begin --BEGIN PROCEDURE GET PORTNUM.
put(" in getportnum"); --stub.
outport (auxcmdprt, clr); A
byt_arr(l) := byte(0);
outport(aux data prt,codegetcpad);--REQUEST TCP ADDRESS.
timer 0;

248
-p.' :

'.*- *.' i ...A._p.

loop --WAIT FOR DATA RECEIVE READY.
if checkterm() then -: -

return "";
end if;
inport (aux stat prt, byt);
if tstbit (integer (byt) ,rxrdy) then
inport(auxdataprt,byt); : .., .
case byt is .
when codegetcpad => exit;
when code-open => put("sending port w/ sec act");

return "";
when code cls ! code abort => return "";
when others => null;

@put("control code=") ;put(integer(byt)) ;new line;
--outport(auxdata_prt,codegetcpad); --stub.
outport(auxcmdprt,clr);

end case; - ,
end if; . *.,end loop ; ., -loop --WAIT FOR DATA SET READY.

amt := 513;
inport(auxstat prt,byt);
if tstbit(integer(byt),dsr) then
gettrns(byt arr'address,aux dataprt, amt);
exit when amt > 0; --$$$

end if;
end loop;
if byt arr(l) = codeaddr then 4
j := I;-- POINTER FOR BYTARR. BYPASS THE CONTROL BYTE.
portnum :=
coma .- ,
loop
--CONVERT BYTES FROM CONCENTRATOR INTO INTEGERS
--AND THEN INTO A STRING WITH COMMAS.
j := j + 1;
int integer(byt arr(j));
str := it to str(int);
portnum := insert(portnum,str,l);
exit when j = 7; --ADDRESS IS SIX BYTES LONG.
portnum := insert(portnum,coma,l);

end loop;
else --THE PROCESS IS OUT OF SYNC. REVERT TO

null; --USER OPTIONS. LEAVE PORTNUM AS ALL BLANKS.
put(" BAD PORT NUMBER FROM CONCENTRATOR. ABORTING.");
new line;

end if;
return portnum;

end get_portnum; .,

function getfilename return string is Of
--AUTHOR: ALEC YASINSAC DATE: APRIL 86

249

--DECRIPION: THIS PROCEDURE PROMPTS THE USER TO ENTER
N- A VALID FILE NAME AND RETURNS THE ENTERED STRING.
%40---EXTERNAL CALLS TO: 1. IO.GET LINE.

-- 2. STRLIB.INSERT/LENGTH
-- 3. ASMLIB.GETCH

use asmlib, strlib, io; v

i, name_len, ext len, ctr, strien: integer;
good -name, has_ext, got Icolon: boolean;
instring, filename: string;
temp: file;
byt: byte;

begin --BEGIN FUNCTION GET FILENAME.
loop --LOOP UNTIL GOODNAME.

loop
put("FILENAME:")
instring:= get linen;

J1% exit when length(instring) > 1;
end loop; ~ .
good name := true;
has ext :- false;
got-colon :=false;
name len =0;
ext len :=0;

i =0;
filename : "

loop --LOOP TO CHECK THE DRIVE DESIGNATOR AND NAME.
i i +1
byt :=cony byt(instring (i));4
case byt is
when byte(97)..byte(122) ! -a..z A

byte(65)..byte(90) ! -A..Z

b.byte(48)..byte(57) => 0_O.9 .*

if name len < 8 then
filename :=insert(filename,

char -to_str(instring(i)), 1);
name len :=name-len + 1;

else
good name :=false;

* - put("FILENAME Too LONG."); new-line;
end if;

when byte(32) = -space

if name len =0 then
null; --SKIP LEADING SPACES.

else
exit;

end if;
when byte(58) => -- colon(:

if (not got colon) and (name len =1) then
name len := name len - 1;
filename :=insert(filename,char to str(1:1) ,l);
got colon :=true;

250

IN
else • -
good name := false;
put('"ONLY ONE COLON ALLOWED."); new line;

end if;

when byte (46) => --period (.)
filename :=insert(filename,char tostr('.'),l);
hasext := true;

when byte(16#ld#) => return ""

when others => good name := false;
put ("CONTROL CHARACTERS NOT ALLOWED.") ;newline;end case;

exit when (i = length(instring)) or not good name "

or has ext;
end loop;--END LOOP TO CHECK THE DRIVE DESIG AND NAME.
if name len = 0 then

goodname :- false;
elseif has ext then [-.-

loop
exit when (extlen > 2) or

not good name or (i = length(instring));
i i +1;
case instring(i) is A

when 'a'..'z' ! 'A'..'Z' ! '0'..'9' =>
filename := insert(filename,

char to str(instring(i)), 1);
ext len := ext len + 1;

when.' ' => ext len := 3;
when others => goodname false;

put("UNIDENTIFIED CHARACTERS IN EXTENSION.");
new line;

end case;
end loop;

end if; --END IF HAS EXT.
end if; --END IF NAMELEN =0. %w e 'I
exit when goodname;

end loop;
return filename;

end getfilename;

function get_parameter (opt: in cmdtyp) return string is
--DESCRIPTION: USER OPTIOITS ATTACHES THE PARAMETER TO THE ".,"

-- OPTION SELECTED.--EXTERNAL CALLS TO:
1. FUNCS. GETFILENAME/GET_PASSWORD/GETUSERNAME.

use io;
parm, dirname, remname, locname: string;

begin

case opt is
when nlst => parm := "";

251

-4

+ -, .,.'- ' "+.,..t .,. ' .",' "•". ."•+ ,".. +"""".'.t"".•%'"""- . . +" """". - '' . . - -" " - " '. .

.... %

when cwd => ,...

put("ENTER THE REMOTE DIRECTORY NAME. "); new line;
parm := get lineo; - •

when dele =>
put ("ENTER THE NAME OF THE REMOTE FILE TO DELETE.");
new line;
put(1"FILE NAME: ");
parm := get lineo;

when pass =>
new line;
parm := get password (;

when port =>
newline;
parm := get portnum(;

when retr => 01"

put("ENTER THE NAME OF THE REMOTE FILE TO RETRIEVE.");new line; -.

put("FILE NAME: ");
parm := get lineo;

when stor =>
put("ENTER THE REMOTE FILE NAME TO STORE IN TO.");
new line;
put(1"FILE NAME: ");
parm := get line(;

when user =>
new line;
parm := get username(;

*. when. others => parm := "";
end case;
return parm;

end getparameter;

end funcs;

with typpkg;
package libi is
--WRITTEN FOR Z100 UNDER ZDOS

use typpkg;
procedure sendcmd(cmd: in out cmd-typ;

parameter: in string);
procedure user options(opt: out cmd typ);
procedure get dataline(dataline: out bytearray;

ctr: out integer);
procedure make-reply(dataline: in byte-array;

ctr: in integer;
reply: out integer; parameter: out string);

procedure process reply(reply: in integer;
parm: in string; state: in out cmdtyp); I.-

end libl;

252

d . % • "% "• . "% "-"% . . ° %'
,d-'-' _-...t . . . Z '-,ZZJ -P

- z - + - - . - - '

with asmlib, blkio, funcs, io, strlib, bit;

package body libl is
use typpkg; .1:

procedure sendcmd(cmd: in out cmdtyp;
parameter: in string) is

--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--CURRENT: 28 APRIL 86
--DESCRIPTION: SEND COMMAND CALLS INTERNAL PROC 'CONVERT'

TO CONVERT THE ENUMERATED TYPE "CMD" INTO A STRING AND
-- SENDS THE STRING WITH ITS PARAMETER OUT THE SERIAL PORT.
-- IF THE COMMAND CANNOT BE SENT OR THE USER TERMINATES,
-- CMD WILL BE SET TO ABORT FTP. OTHERWISE, CMD IS NOT
-- MODIFIED.
--EXTERNAL CALLS TO: 1. BIT.INPORT/OUTPORT/TSTBIT.
-- 2. STRLIB.LENGTH.
-- 3. IO.WRITE/OPEN/CLOSE.
-- 4. ASMB.BYTE TOCHAR.

use typpkg, asmlib, io, strlib, bit;
byt: byte;

cmdline, cmdstr: string;
suffix: string(2) ;
addr, len: integer;
chr: character; -
timer: integer := 0;
timeout: constant integer : 500;

procedure convert(cmd: in cmd typ; cmdstr: out string)is
--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--DESCRIPTION: CONVERT CONVERTS THE ENUMERATED TYPE
-- COMMAND "CMD" INTO A STRING.
begin

case cmd is
when abor =>

cmdstr := "abor";
when cwd =>

cmdstr := "cwd ";
when dele =>

cmdstr := "dele ";
when help =>

cmdstr := "help";
when nlst =>

cmdstr := "nlst";--LIST DIRECTORY.
when noop =>

cmdstr := "noop"; -

when nul => .
cmdstr := "noop";

when pass =>
cmdstr := "pass ";--PARM IS THE PASSWORD.

253

when pasv =>
Acmdstr :="pasv";

when port =>
cmdstr :="port "

when quit =>
cmdstr :="quit";

when rein =>
cmdstr :="rein ";--REINITIALIZE.

when rest =>
cmdstr :="rest ";--RESET.

when retr => -

cmdstr := "1retr ";--GET A FILE.
when stat =>

cmdstr "=1stat";
when stor =>

cmdstr "=1stor "1;

when user =>
cmdstr :-"user "1;--PARM IS THE USER ID.

when others =>
cmdstr := "noop";
put("IERROR OCCURRED. CMD NOT RECOGNIZED.");

ed new-line;
end case;
edconvert;

--

begin --BEGIN PROCEDURE SEND COM4MAND.
@put("lsend cmd"); new line;

* convert(cmd,cmdstr);
cmdline :=insert(cmdstr,parameter,1);--ATT CMD TO PARM.
suffix := "1bb";
suffix(1) :=byte_to_chr(cr);

suffix(2) :=byte to chr(lf);
cmdline insert (cmdline,suf fix, 1); --ATTACH CARRIAGE

suffix--RETURN AND LINE FEED TO THE COMMAND STRING.
suffix "b";

suffix(l) :=byte to chr(code-cmd);
cmdline := insert(suffix,cmdline,l);
loop

inport(aux-stat prt,byt); --WAIT UNTIL DSR GOES LOW.
V if not tstbit(integer(byt),dsr) then

--THE FIRST BYTE OF A STRING IS ITS LENGTH, ADD ONE
--TO THE ADDRESS OF THE STRING TO START AT THE FIRST
--BYTE OF THE MESSAGE. *t

addr :=cmdline'address + 1;
len :=length(cmdline);
send trns(addr, aux dataprln;: 1

6 exit when len = 0;
timer := timer + 1;
@put("1no cmd sent. cmd = ");put(cmdline);new line;

end if;

* 254

- P,

. o,-^ A

if timer > timeout then
cmd := abor;
put ("NO RESPONSE FROM CONCENTRATOR."); new line;
exit;

else , . ,
timer := timer + 1; %.F

end if;p end loop;

@put("cmd = $") ;put(cmdline); put("$$") ;new line;
@put("length = ") ;put(length(cmdline)) ;newline;

end send cmd;

procedure useroptions (opt: out cmd_typ) is
--AUTHOR: ALEC YASINSAC DATE: MAY 86
--OUTPUT: THE COMMAND THAT THIS PROCEDURE TRANSMITTED IS
-- IDENTIFIED BY THE OUT PARAMETER.
-- DESCRIPTION: USER OPTIONS IS CALLED WHEN ACTION IS
-- ON ALL PREVIOUS COMMANDS. IT IS EXPECTED THAT IF THIS
-- PROCEDURE IS CALLED, THE USER IS LOGGED IN TO THE
-- SYSTEM. FROM HERE, THE USER CAN REQUEST A FILE

4. -- TRANSFER, CHANGE DIRECTORY ON THE REMOTE HOST, LIST THE
-- DIRECTORY ON THE REMOTE HOST, OR TERMINATE THE PROCESS.
-- THE USER OPTIONS PROCEDURE ALSO OPENS AND CLOSES LOCFILE
-- FOR RETRIEVING OR SENDING DATA TO/FROM THE REMOTE HOST.
--EXTERNAL CALLS TO: 1. IO.OPEN/CLOSE/CREATE/DELETE.

use io, funcs;
filename, parameter: string;
gotopt: boolean;

begin
if is open(typpkg.locfile) then

close(typpkg. locfile);
end if;
gotopt := false;
opt := getopt();
case opt is

when retr => .4-..

put ("ENTER THE LOCAL DESTINATION FILE NAME."); .0
new line;
filename := getfilenameo;
purge(filename) ; --PURGE WILL NOT ABORT IF THE

--FILE 'FILENAME' DOES NOT EXIST.
create(typpkg. locfile, filename,write only);

when stor => ...

loop
put("ENTER THE LOCAL SOURCE FILE NAME. ");
new line;
filename := get filename(;
open(typpkg. locfile, filename, read only) ;
exit when ioresult /= 255;
put("CANNOT OPEN FILE ") ;put(filename) ;put(". ");
new line;

255

00

77

%%

end loop;
when others => null;

end case;
parameter := getparameter(opt);
send cmd (opt, parameter);

end useroptions;
-------------------------------------- ----------------------------

procedure get dataline(dataline: out byte array;

ctr: out integer) is
--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--DESCRIPTION: PROCEDURE GET DATALINE DOES THE NECESSARY
-- HANDSHAKING WITH THE 8612 AND READS ANY DATA OR CONTROL
-- CHARACTER IS COMING UP FROM THE FOREIGN SITE. OUTPUT IS
-- THE DATA AND THE.BYTE COUNT. CONTROL INFO IS PASSED
-- BACK AS THE FIRST CHARACTER OF THE DATALINE.
--EXTERNAL CALLS TO: 1. BIT.INPORT/OUTPORT/TSTBIT.
-- 2. ASMB.GET TRNS.

3. IO KEYPRESS •.
use typpkg, asmlib, io, bit;
cntl chr rec : boolean;
max wait: constant integer := 30000;
1 : integer;b y t : b y t e ;,

- ..inline : string;

cntr: integer;

begin _ _

@put ("in getdataline"); newline; 'b

outport(aux dataprt,clr);
cntlchrrec := false;
ctr := 0; cntr := 0; i :0;
loop--WAIT FOR KEYPRESS,TIMEOUT,CONTROL CHARACTER,OR DSR.

if funcs.checkterm() then --CHECKS FOR A].

dataline(l) := codecls;
return;

end if; --END IF CHECKTERM.
cntr := cntr + 1; --TEST FOR TIMEOUT.
if cntr > max wait then

@put("time-wait in get dataline.); new line;
outport(auxdataprt, code checkreplyq);

-- ACTS AS AN 'ARE YOU THERE' REQUEST.
cntr := 0; jiiii

end if; -- END IF TIMEWAIT.
inport(aux statprt,byt);
if tstbit(integer(byt),rxrdy) then--TEST FOR CNTL CHR.

inport(auxdataprt,byt);
@put(" got cntl chr"); new line;
ctr := 1;
case byt is

when code cls ! code abort =>
dataline(l) := codeabort;

256

.-.

IF V.~~~~ -7- T -7

if isopen(typpkg.locfile) then
close(typpkg.locfile);

end if;
exit; --EXIT LOOP TO GET DATA FROM AUX PORT.

when codeopen => dataline(l) := codeopen;
when code closdata=> dataline(l) :=code closdata; -
when code qempty => dataline(1) := codenull;
when others => ctr := 0;

@put("don't recognize control character = ");
@put(integer(byt)); new line;

loop --CLEAR AUXILLARY PORT. ..

inport(aux statprt, byt); ...
exit when not tstbit(integer(byt),rxrdy);
inport(auxdata_prt,byt);

@prntdata(byt);
end loop;

end case;
end if; --END IF RXRDY.
inport(aux_statprt,byt);
if tstbit(integer(byt),dsr) then --TEST FOR DSR..- ~ctr :=513 ; -.

get trns (dataline'ADDRESS, auxdataprt, ctr);
@put("dsr");
if ctr > 0 then

exit;
end if;

end if; --END IF TSTBIT FOR DSR.
end loop;--ENDS LOOP WAITING FOR BYTES FM CONCENTRATOR.

end getdataline;

procedure make reply(dataline:in byte_array;ctr:in integer;
reply: out integer; parameter: out string) is

--CURRENT: 3 MAY 1986
--AUTHOR: ALEC YASINSAC DATE: MAY 1986
--DESCRIPTION: PROCEDURE GET DATALINE DOES THE NECESSARY
-- HANDSHAKING WITH THE 8612-AND READS ANY DATA OR CONTROL
-- CHARACTER IS COMING UP FROM THE FOREIGN SITE.
--EXTERNAL CALLS TO: 1. BIT. INPORT/OUTPORT/TSTBIT.
-- 2. ASMB. PRNTDATA/BYTE TO CHR.

3. INSERT.STRILIB.

use strlib, typpkg, asmlib, bit;
len, j : integer;
chr : character;.
rep : string;

9 begin
@put("in make reply");
len := ctr;
parameter :=
for j in 2..len loop

prntdata(dataline(j)); --DISPLAY REPLY ON SCREEN.

257

: Sm

W;. oVo '-

rep = " ";
if ((j > 5) and (j < 80)) then

chr := bytetochar(dataline(j));
rep(l) := chr; --TEMP STORAGE.
parameter := insert(rep,parameter,l);

end if;
end loop;
rep " ";
for j in 1..3 loop

S rep(j) := byte tochar(dataline(j + 1));
if not (rep(j) in '0' '9') then

--NOT A REPLY. COULD BE A HELP MSG.
reply :0;
parameter : ";"'.

@put("not a.reply "); put(rep); new line;
return;

end if;
end loop;
reply := strtoint(rep);

end make reply;

procedure get data(lst cmd: in out cmdtyp) is
--AUTHOR: ALEC YASINSAC DATE: APRIL 86
--INPUT: 1. LST CMD IS THE LAST COMMAND THAT WAS SENT.
--DESCRIPTION: S2-'

-- Get data calls get_trns to receive an expected data
-- transfer from the concentrator. If the transfer is not
-- received after ten tries, a code is sent asking for
-- status of the data connection.
-- EXTERNAL CALLS TO: 1. IO.WRITE.

2. ASMLIB. PRNTDATA.
use typpkg, asmlib, io, strlib, bit;
reply, amt, strlen: integer;
byt: byte;
parameter: string;
timer, ctr: integer;
dataline: bytearray;

begin --BEGIN PROCEDURE GET DATA. 2
@put(" in get data"); newline;
timer := 0;
loop

if funcs.checkterm() then
lst cmd := abor;
return;

end if;
inport(auxstatprt,byt); MI
if tstbit(integer(byt),dsr) then .

ctr := 513;
get_trns (dataline 'ADDRESS, aux_dataprt, ctr);
if ctr > 0 then -,

case dataline(1) is a Ira

258

o .4

when code data => ,

if ((is_open(typpkg.locfile))and(ctr>l))
then

for j in 2..ctr loop
write(locfile,dataline(j)");
@prntdata(dataline(j));
--LOCFILE IS OPENED IN USER OPTIONS
--WHEN THE RETR COMMAND IS SENT.

end loop; new line;
@put("DATA RECEIVED ctr= ") ;put(ctr);

else
for j in 2. .ctr loop--DISPLAY ON CONS.

prntdata(dataline(j));
end loop; new line;

end if; --END IF ISOPEN.
when codereply=>--REPLY HERE OUT OF ORDER.

make reply (datal ine, ctr, reply,parameter);
case reply is

when 221 ! 421 => 1stcmd abor; -
when others => null;

end case;
when others =>

for j in 2..ctr loop--DISPLAY ON CONS.
prntdata(dataline(j));

end loop; newline;
end case; --END CASE DATALINE(1) IS.

end if; --END IF CTR > 0;
else --NO DSR. CHECK RXRDY.

if tstbit(integer(byt) ,rxrdy) then
inport(auxdata_prt,byt);
case byt is

when code closdata =>
if is-open(typpkg.locfile) then

close (typpkg. locfile);
end if;
@put("data connection is closed");

": exit;
when code open => null; --KEEP WAITING.
when code cls => 1st cmd := abor;

exit;
when code abort => 1st cmd abor;

exit;
when others => null;

end case;
else

if timer > 3 then timer 0;
outport(auxdataprt,codedprtstat);

else
timer := timer + 1;

end if;
end if; --END IF RXRDY.

end if; -- END IF DSR.

259

7_7.
a.,4

'LIM

end loop;
if isopen(typpkg.locfile) then

close(typpkg.locfile);
end if;

end getdata; --ENDS PROCEDURE PROCESSDATA.

procedure senddata(ist cmd: in out cmdtyp) is .a
use typpkg, io, asmlib, bit, funcs;
time wait exceeded: boolean := false;
len, i, amt, ctr: integer;
byt: byte;
byt arr: byte array;
is text: boolean;

begin

len := 0;
loop --MAKE SURE REMOTE SERVER IS READY TO RECEIVE.

outport (auxdata prt, code dprtstat);
i := 0; -
loop --WAIT FOR CODE RETURNED FROM CONCENTRATOR.

if funcs. checkterm () then --CHECKS FOR A]

1st cmd := abor;
return;

end if; --END IF CHECKTERM.
i:= i + 1; -'

inport(aux stat prt,byt);
exit when tstbit (integer (byt),rxrdy);
if i > 3000 then -- CONCENTRATOR IN LOOP. -

time wait-exceeded := true;
exit;

end if;
end loop;
inport(auxdata_prt,byt);
if len > 1000 then

time wait exceeded := true;
else

len := len + 1;
end if; .-.
exit when ((byt = code open) or time wait exceeded);

end loop; --END LOOP CHECKING DATA CONNECTION.
if byt = code open then --SEND WHOLE FILE TO 8612.

put("IS FILE TO BE TRANSFERRED A TEXT FILE?");
put(" (y/n) : "1) ; ' "

loop --DETERMINE IF TEXT FILE.
if keypress() then

getch(byt); newline;
case byt is

when byte(16#ld#) => -]

1st cmd := quit;
sendcmd(lstcmd,"1,);

return; K.
260 •"""

, .

_____ ____ ._..-___

"*.

when byte(89) ! byte(121)=> --Y,y
is text := true;
exit;

when byte(78) ! byte(llO)=> --N,n
is text := false;
exit;

when others => newline;
put(" (y/n): "),

end case; new-line;
end if;

end loop; -',
loop --SEND AS MANY PACKETS AS REQUIRED.

@new line; put("data to be sent =
byt arr(l) := codedata;
len 1;
loop --STORE FILE DATA IN MEMORY READY TO SEND.

len := len + 1;
read(typpkg.locfile,byt arr(len));
@prntdata(byt arr(len));
exit when len > 511; 0
if is text then .

exit when end offile(typpkg.locfile);
else

exit when eof(typpkg.locfile);
end if;

end loop;
@new line;
@put("num chrs = "); put(len);
inport(aux stat prt,byt);
if tstbit (integer (byt) ,rxrdy) then--GOT CTL CHR

inport(aux dataprt,byt);--FRM CONCENTRATOR.
case byt is

when code cls!code abort => .-. -
put ('ABORTED BY REMOTE HOST.");
1stcmd := nul; newline;
return;

when others => null;
end case;

end if; ,'.
loop _

amt := len; .'.
sendtrns(byt arr'address,aux data prt,amt); k '
exit when amt = 0;

if keypress() then
getch(byt);
case byt is

when byte(lG#ld#)=> 1st cmd quit;
sendcmd(lstcmd,"");

" - return;
when others => null;

end case;
end if; --END IF KEYPRESS.

261..4

*%p *.. • ---------...-- -.-

*r end loop; --END LOOP WAITING FOR LOW DSR.
v. @put("packet sent"); new line; d:.A

if is text then
exit when end of file(typpkg.locfile);

else
exit when eof(typpkg.locfile);

end if;
end loop;--END LOOP TO SND WHOLE FILE TO REM HOST.
@put("end of file reached"); new line;
Soutport(aux_data _prt,codeclosdata);
close(typpkg.locfile);

else --COULD NOT OPEN DATA CONNECTION.
null; -- THE DATA CONNECTION COULD NOT BE

--OPENED. AN FTP REPLY SHOULD BE COMING.
end if; --END IF BYT = CODE OPEN.

end send data;

procedure processreply(reply: in integer; parm: in string;
state: in out cmd typ) is

--AUTHOR: ALEC YASINSAC DATE: APRIL 1986
--DESCRIPTION: PROCESS REPLY USES THE INPUT PARAMETER
-- 'REPLY' TO DETERMINE THE COURSE OF ACTION FOR THE
-- SYSTEM TO TAKE. 'REPLY' IS THE FTP REPLY THAT A FOREIGN
-- SITE HAS GENERATED IN RESPONSE TO AN FTP COMMAND THAT
-- ORIGINATED IN THIS MACHINE. POSSIBLE ACTIONS INCLUDE
-- (but are not limited to) TRIGGERING A DATA
-- TRANSFER, REISSUING A COMMAND, AND CLOSING A CONNECTION.
-- ANY REPLY THAT IS NOT A REPLY THAT CAN BE TRIGGERED BY
-- THE COMMAND 'STATE' IS IGNORED. OFTEN, A NOOP COMMAND
-- IS SENT WHEN THE REMOTE HOST IS LIKELY TO SEND A SECOND
-- REPLY TO THE PREVIOUS COMMAND. THE SECOND REPLY WILL BE
-- DISPLAYED BEFORE THE REPLY TO 'NOOP' IS PROCESSED.
-- EXTERNAL SUBROUTINES:
-- 1. FUNCS . GETFILENAME/GETPARAMETER/GET_PORTNUM/
-- GETPASSWORD/GET_OPT/GET USERNAME/SEND_CMD.

use typpkg, io, funcs, strlib;
parameter: string;

begin --PROCESS REPLY.
@put("In process reply."); new line; '-
case state is

when acct =>
case reply is

when 202 => state := noop;
send cmd(state,"");

when 230 =>
parameter := get portnumo;
if parameter = "" then

state := quit;
else

.26 .2

" ~262 ""

state port;
send cmd (state, parameter); 5'

end if;
when 421 => state := abor;
when 500 ! 501 =>

put ("ENTER YOUR ACCOUNT NUMBER:) ;
parameter := getlineo;
state := acct;
send cmd(state,parameter);

when 530 => parameter := getusername(; -'

if parameter = "" then
state := abor;

else
state := user;
send cmd(state,parameter);

end if;
when others => null;

end case;
--End of 'when acct'.

when cwd ! dele =>
case reply is

when 200!250 => state := noop;
sendcmd(state,"");

when 421 => state := abor;
when 500 ! 501 ! 502 => state := noop;

send cmd(state,"");
when others => null; 4

end case;
--END WHEN CWD ! DELE.

when help =>
case reply is

when 211 ! 214 ! 500..502 => state := noop;
sendcmd(state,"") ;--2ND REPLY MAY FOLLOW

when others => null; --THE HELP COMMAND.
end case;

--when nlst => see when retr.

when noop ! port =>
case reply is %

when 200 => user options(state);
when 421 => state := abor; X,
when 426 =>

parameter := get portnumo;
if parameter = "" then

state := quit;
else .• '

state := port;
send cmd(state,parameter);

end if;

263

.1

."

when 500!501 =>null;--THIS SYSTEM WILL NOT SEND
--AN INVALID PORT COMMAND OR PARAMETER. .•

.* when others => null; 'v
end case;

--END CASE NOOP!PORT.

when nul => --NUL IS THE START STATE. '

case reply is
when 220 ! 530 =>

parameter := getparameter(user); &.-
if parameter = "" then

state := abor;
.. .else

state := user; I
send_cimid(state,parameter);";; end if; %

when 221 ! 421 => state := abor;

when others => null;
end case;

when pass =>
case reply is

when 230 =>
parameter := get portnumo;
if parameter = "" then

state := quit;
else

state :- port;
send cmd(state,parameter); -4

end if;
.4. when 332 => , 1

put(" ENTER YOUR ACCOUNT NUMBER: ");
parameter := get line(); ,
state := acct;
sendcmd(stateparameter);

when 421 => state := abor;
when 500 ! 501 => null;

--ASSUME THIS SYSTEM CANNOT SEND BAD PASSWORD.
when 530 =>

parameter := getparameter(user);
if parameter = "" then

state := abor;
else

state := user;

sendcmd(state,parameter);
end if;

when others => null;
end case;

--End of 'when pass'.

d- -. --when port => SEE WHEN NOOP. .-

264

-; -~.'[-.

.4J

when quit => V
case reply is .'1-

when 221 ! 421 => state := abor;
when others => null;

end case; 5*-.

--END WHEN QUIT.

when retr : nlst =>
case reply is

when 110 ! 125 ! 150 =>null;--Wait for another reply.
when 221 ! 421 => state := abor;
when 226 => getdata(state) ;--CAN CHANGE STATE.

N>case state is
when retr ! nlst =>

.parameter := get portnumo;
if parameter = ,, thenstate :=quit; I_.
e l s e' - _ -

state :port;
send cmd(state,parameter);

end if; -
when abor => null;
when others => state abor;

@put ("in process reply. Bad state."); . .end case; .
when 250 => get data(state);

case state is '-.
when retr ! nlst => state := noop;

send cmd(state,""); t Iwhen abor => null; .
when others => state :- abor;

@put ("in process reply. Bad state.");
end case;

when 425 ! 426 =>
parameter := getportnum(;
if parameter = ,, then

state quit;
else

state := port;
send cmd (state, parameter);

end if;
when 450 ! 451 ! 500 ! 501 ! 550 =>

state noop;
send cmd(state,""');

when others => null;
end case;

--END WHEN 'RETR'. V -0

when stor =>
case reply is

when 125 ! 150 => senddata(state);
if state = stor then

265

state noop;
send cmd(state,""-);

end if;-
when 221 ! 421 => state := abor;
when 226 =>

parameter := get portnumo; A.
if parameter = ' ' then

state := quit;
else

state := port;
end if;

when 250 => state := noop;
sendcmd(state,"") ;

when 425.426 =>
parameter := getportnum(;
if parameter = "" then

state quit;
else

state := port;
send cmd(state,parameter);

end if;
when 450!451!452!500!501 => state := noop;

sendcmd(state,"");
when 532 =>

put ("ENTER YOUR ACCOUNT NUMBER: ");
parameter := getline(;
state := acct;
send cmd(state,parameter);
if not (state = abor) then

state := stor;
end if;

when 552 ! 553 => state := noop;
send cmd (state,"");

when others => null;
end case;

--END WHEN 'STOR'.

when user =>
case reply is

when 230 =>
parameter := get portnum();
if parameter - "" then

state := quit;
else

state := port;
sendcmd(state,parameter);

end if; .
when 331 => *.'.

parameter := getpassword 0;
state := pass;
send cmd(state,parameter); -:e,

266-a

when 332 =>
put("ENTER YOUR ACCOUNT NUMBER: "); .0
parameter := getlineo;
state := acct;
sendcmd(state,parameter);

when 421 => state := abor;
when 500!501 =>null;--CANNOT SEND BAD USER CMD.
when 530 =>parameter := get parameter(user);

if parameter = "" then
state := abor;

else
state := user;
send cmd(state,parameter);

end if ;
when others => null;

end case;
--END WHEN USER. .
when others => @put("bad state in processreply");

state := noop;
send cmd(state,"");

end case;
end processreply;

end libl;

%'..

41.% °
'

S°. **° 5-

N- 5..% .-

'. .o -

267 ""t . °.Az

o° s

-..

" , , ' , " , ' . " ..S ' I' . . , . , . , . - - . , . " ' . . -' . , - . - , - . . ' . - . . . " . . , , , . , : " . . , . 2 - '

- - --.--.r . -r4,r;-Ir .w " y y," y" ----'. - --," -

with funcs, asmlib, libi, typpkg, bit, io, strlib, getip;

te procedure ftp is
--AUTHOR: ALEC YASINSAC APRIL 1986
--CONFIGURATION: THIS PROGRAM IS WRITTEN TO RUN ON A Z-100
-- OPERATING UNDER Z-DOS.
--DESCRIPTION: THIS PROCEDURE DRIVES THE REMOTE FILE
-- TRANSFER PROCESS ON THE NPS AEGIS LOCAL AREA NEWORK.
-- THE USER IS PROMPTED TO SELECT HIS DESIRED DESTINATION
-- AND AN FTP COMMAND CONNECTION IS ESTABLISHED. THE
-- PROCESS THEN BECOMES A CYCLE OF SENDING COMMANDS AND
-- PROCESSING REPLIES. THE CYCLE ENDS WHEN THE USER . .

-- ENTERS QUIT AND THE QUIT COMMAND IS SENT.

use asmlib, funcs, libl, bit, typpkg, io, strlib, getip;

ip: array (1..4) of integer;
byts: array (1..4) of byte;
auxfile, host: file;
byt, org ocwl: byte;
opt : cmdtyp;
cnt exit: BOOLEAN;
reply, wait, ctr, tst : integer;
parameter, portnum: string;
dataline: byte array; --512 bytes.
more_replys, stopit: boolean;

begin --BEGIN PROCEDURE FTP.
inport(ocwl_reg,orgocwl);
outport(ocwlreg,ocwl);
clrscreen;
outport (aux cmd prt, clr);
put("WELCOME TO THE MULTIUSER SYTSTEM ');
put("FILE TRANSFER PROCESS (FTP).");
new_line;
open(host,"hosts.fil",readonly);
if (ioresult = 255) then
close(host);
put("FILE HOSTS.FIL DOES NOT EXIST. "); NEWLINE;

else

close (host);
open(auxfile,"aux",read write); .'

get addr(ip(l) ,ip(2) ,ip(3),ip(4)) ;
--HAVE THE USER SELECT THE REMOTE ADDR. ,-i.

stopit := true;
for i in l..4 loop
byts(i) := byte(ip(i));
if ip(i) /= 0 then
stopit := false;

end if;
. end loop;

if not stopit then

268

-. 4'. . S,- " . . ,. ',,'*-'-'.

@new line; put("address = ");
*fori in 1..4 loop put(ip(i)); put("");end loop;
--MUST SEND AND RECEIVE CODE FTP BEFORE PROCEEDING.
put ("ATTEMPTING CONNECTION WITH CONCENTRATOR");
write(auxfile,codeftp);
wait := 0;
loop -- WAIT FOR CHARACTER FROM 8612.

inport (aux stat prt,byt);
if tstbit (INTEGER(byt) ,RxRdy) THEN
inport(auxdataprt,byt);
case byt is
when codeftp => clrscreen;

put ("trying... "); newline;
exit; -•ftp)

when code cls => write(auxfile,code_ftp);
@put("received code_cls"); new line;

when others => write(auxfile,code-cls);
@put("got byte other than codeftp");
@new line;

end case; .
else

if checkterm() then --CHECK FOR A]

write(auxfile,codecls);
return;~~~end if ; A

wait := wait + 1; ._ \
if wait > 32000 then
@put("time-wait") ;newline;
wait := 0;
write(auxfile,code ftp);

end if; ,
end if;

end loop;
loop
ctr := 4;
send_trns (byts 'address, aux dataprt, ctr);
exit when ctr = 0;
if checkterm() then
write(auxfile,code_cls);
return;

end if;
end loop;
if not stopit then

opt := nul;
loop --MAIN LOOP FOR PROCESSING FTP REQUESTS.

ctr := 0;
get dataline(dataline, ctr);
case dataline(1) is . .

when code abort =>
put ("FTP TERMINATED BY REMOTE HOST."); I%
if isopen(typpkg.locfile) then .. s'

close (typpkg.locfile);

269

...

end if;
exit;

when code cls => - L E Q O
if opt = quit then --ONLY SEND QUIT ONCE.

exit;
else

opt := quit;
send cmd(opt,""); I...

put ("FTP TERMINATED BY USER.");
if isopen(typpkg.locfile) then

close(typpkg. locfile);
end if; new line;

end if;
when cQde data => --WILL NOT SEND FTP CMD.

if is open(typpkg.locfile) then
for-j in 2..ctr loop
write(locfile,dataline(j));
@prntdata(dataline(j));
--LOCFILE IS OPENED IN USER OPTIONS
--WHEN THE RETR COMMAND IS SENT.

end loop;
else --DISPLAY TO SCREEN.for j in 2..ctr loop

prntdata(dataline(j));
end loop; new line;

end if;
when code reply =>--WILL SEND AN FTP CMD.
makereply(dataline, ctr, reply, parameter);
process reply(reply, parameter, opt);

when code null => --NOTHING FROM REMOTE HOST.
case opt is --BOTH ENDS WAITING.
when acct =>

parameter := getparameter(acct);
send cmd(opt, parameter);

when cwd ! dele ! help ! noop =>
6-

user options(opt);
when pass => parameter := getpassword); -

send cmd(opt,parameter);
when port => null; --KEEP WAITING.
when quit => opt := abor;
when retr ! stor =>

put("REQUEST NOT PROCESSED.");
user options(opt);

when user => parameter := getusernameo;
send cmd(opt,parameter);

when others => useroptions(opt); Z
end case;

when others => null;
end case;
exit when (opt = abor); %

end loop; --ENDS MAIN PROCESSING LOOP. .

end if; --ENDS INNER IF NOT STOPIT.

270 '

*7
AA

write(auxfile,code_cls);
outport(auxcmdprt,dtr); --WILL CAUSE CONCENTRATOR

--TO TERMINATE ANY TRANSIENT PROCESSES.
end if; --ENDS IF NOT STOPIT.

end if; --ENDS IF IORESULT = 255.
end ftp;-

pa

BATCH FILE IN COMPILATION ORDER

The following is the contents of the batch (.bat or .sub)
file used to compile the preceeding programs.

del a:typpkg.sym
del a:asmlib.sym
del a:funcs.sym
del a:libl.sym
del a:getip.sym
del a:asmlib.jrl
del a:getip.jrl
del a:funcs.jrl
del a:libl.jrl
del a:ftp.jrl
del a:ftp.com
janus a:typpkg.spc
janus a:asmlib.spc
janus a:funcs.spc
janus a:lib1.spc
janus a:getip.spc
jasm86 a:asmlib
janus a:get ip/w
janus a:funcs/w
janus a:libl/w
janus a:ftp/w
jlink a:ftp

,,."- . . -

'271

INO

-2-..,

-- % . - -

' '-' --'' L'-- --'''-' '' '' -- '-' '''-
. "

'"" "" " " -- " " " "-""" ""' '': '""""' "" " '" " 'C '"" ' " " " '" "3.'.'.'$'' ., 4..' '

• r .r c- ar a- -. r .r 4-tr r .r ¢r 4"*.*.*.%d .' .-. . .- . ° " " .' " • - . ' " -. .

APPENDIX I

LISTING OF Z-100 LOCAL PROGRAMS

-~ PACKAGE global is

asciinull : CONSTANT BYTE BYTE(O);F' ~asciibs : CONSTANT BYTE BYTE(16#23#);
asciiasterisk: CONSTANT BYTE :=BYTE(16#2A#);
asciiperiod :CONSTANT BYTE BYTE(16#2E#);
asciicomma :CONSTANT BYTE :=BYTE(16#2C#);
asciiat :CONSTANT BYTE :=BYTE(16#40#);
asciicolon :CONSTANT BYTE :=BYTE(16#3A#);
asciiBS :CONSTANT BYTE BYTE(16#O8#);
asciiUS :CONSTANT BYTE BYTE(16#1F#);
asciiunderin :CONSTANT BYTE :=BYTE(16#60#);
asciiFF :CONSTANT BYTE BYTE(16#OC#);

asciC :CONSTANT BYTE BYTE(16#OD#);
asciiLF :CONSTANT BYTE BYTE(16#OA#);
asciicntlR :CONSTANT BYTE :=BYTE(16#12#);
asciicntlQ :CONSTANT BYTE BYTE(16#11#);
asciibell :CONSTANT BYTE BYTE(16#07#);
asciispace :CONSTANT BYTE BYTE(16#20#);
asciiquest :CONSTANT BYTE BYTE(16#3F#);
asciicntlZ :CONSTANT BYTE BYTE(16#lA#);
asciizero :CONSTANT BYTE :=BYTE(16#30#);

-:asciinine :CONSTANT BYTE BYTE(16#39#) ;
asciiA : CONSTANT BYTE :=BYTE(16#41#);
ascii a :CONSTANT BYTE :=BYTE (16#61#) ;
ascii : CONSTANT BYTE BYTE(16#42#);
ascii b :CONSTANT BYTE BYTE(16#62#);
asciiC :CONSTANT BYTE BYTE(16#43#);
ascii c :CONSTANT BYTE :=BYTE(16#63#);
asciiD CONSTANT BYTE BYTE(16#44#);
ascii d :CONSTANT BYTE BYTE(16#64#);
asciiE :CONSTANT BYTE BYTE(l6#45#);
asciiF :CONSTANT BYTE :=BYTE(16#46#);
ascii f :CONSTANT BYTE BYTE(16#66#);
asciiiG CONSTANT BYTE BYTE(16#47#);
ascii_g :CONSTANT BYTE BYTE(16#67#);
asciiI CONSTANT BYTE BYTE(16#49#);
ascii i :CONSTANT BYTE BYTE(16#69#);
asciiL CONSTANT BYTE BYTE(16#4C#);
ascii_1 :CONSTANT BYTE BYTE(16#6C#);
asciiM CONSTANT BYTE BYTE(16#4D#);
ascii m :CONSTANT BYTE BYTE(16#6D#);
asciiN :CONSTANT BYTE BYTE(16#4E#);

272

ascin : CONSTANT BYTE :=BYTE(16#6E#) ;
asciiO : CONSTANT BYTE BYTE(16#4F#);
asciiP : CONSTANT BYTE BYTE(16#50#);

ascii_p : CONSTANT BYTE BYTE(16#70#);
asciiQ : CONSTANT BYTE :=BYTE(16#51#) ; I,..ascii_q : CONSTANT BYTE BYTE(16#71#);
asciiR : CONSTANT BYTE BYTE(16#52#);
ascii r : CONSTANT BYTE BYTE(16#72#);
asciiS : CONSTANT BYTE BYTE(16#53#);
asciis : CONSTANT BYTE BYTE(16#73#);
asciiT : CONSTANT BYTE BYTE(16#54#);
ascii t : CONSTANT BYTE BYTE(16#74#);
asciiU : CONSTANT BYTE BYTE(16#55#);
asciiV : CONSTANT BYTE BYTE(16#56#);
ascii v : CONSTANT BYTE BYTE(16#76#);
asciiW : CONSTANT BYTE BYTE(16#57#);
ascii w : CONSTANT BYTE BYTE(16#77#); ,-
asciiX : CONSTANT BYTE BYTE(16#58#);
asciiZ : CONSTANT BYTE BYTE(16#5A#);
asciiZ : CONSTANT BYTE BYTE(16#7A#);

asciiDEL : CONSTANT BYTE BYTE(16#7F#);
term : CONSTANT BYTE BYTE(16#lD#);

ready CONSTANT BYTE := BYTE(0);
talk CONSTANT BYTE := asciiT;
getfile CONSTANT BYTE : asciiG;
sendfile CONSTANT BYTE := asciiS;
sending CONSTANT. BYTE := asciis;
receiving :.CONSTANT BYTE ascii r;
repeatsnd CONSTANT BYTE asciiR;
unable : CONSTANT BYTE asciiU;

" filedat : CONSTANT BYTE asciiF;
close : CONSTANT BYTE asciiC;
whothere : CONSTANT BYTE := asciiW;
badtrns : CONSTANT BYTE asciiB;
acklast : CONSTANT BYTE asciiA;
ImHere : CONSTANT BYTE asciiI;
EOF : CONSTANT BYTE asciiE;
wait for ack : CONSTANT BYTE ascii w;
quit : CONSTANT BYTE asciiQ;
prt chg : CONSTANT BYTE asciiP;
netstat : CONSTANT BYTE asciiN;
print : CONSTANT BYTE asciip;
dir : CONSTANT BYTE asciiD;
dir data : CONSTANT BYTE ascii d;
info : CONSTANT BYTE asciil;
log : CONSTANT BYTE asciiL;

broadcast CONSTANT BYTE BYTE(16#FF#);
hdr len : CONSTANT INTEGER 6;
thrshld : CONSTANT INTEGER 10000;
ocwlreg constant integer (16#00f3#);

273

-- - ... -° -'. A -. "a•

ocwl : constant byte byte (16#aa#);
code cls : constant byte := byte(16#c3#); --C
code-abort : constant byte byte(16#cl#); --A
code-status : constant byte byte(16#d3#); --S
code-arlog : constant byte byte(16#d2#); --R
code local. : constant byte byte(16#CC#); --L ":
codelstn : constant byte byte(16#CF#); --0
code estab : constant byte := byte(0);
code-reqPrt : constant byte byte(16#FO#); --p
codeRTS : constant byte := byte(16#25#);
code-print : constant byte byte(16#d4#); --T A I
codeendprint: constant byte := byte(16#f4#); --t
dat : constant integer := (16#ec#);
stat : constant integer := (16#ed#);
cmd : constant integer (16#ef#);
clr : constant byte := byte(16#25#);
DSR : constant integer := 7;
DTR : constant byte := byte(16#27#);
RxRdy constant integer := 1.
rs232_delay : constant integer 100;
numprts : constant integer 23;
nullbyt : constant byte := byte(0);
max mem blk : CONSTANT INTEGER 30;
numprts : CONSTANT INTEGER 23;
head : CONSTANT INTEGER -= numprts-+ 1;
TYPE array8 is ARRAY(1..8) of BYTE;
TYPE array3 is ARRAY~l.o.3) of BYTE;
TYPE array2 is ARRAY(1..2) of BYTE;
TYPE array4 is ARRAY(2.4) of BYTE;
datstrg : array(l..512) of byte;
TYPE array512 is ARRAY(l..512) of BYTE;

TYPE fcbREC is RECORD
dry : BYTE;
name : array8;
ext array3; a*,

extnt: INTEGER;
Rsize: INTEGER;
Fsize: array4;
date : array2;
time : array2;
resrvd: array8;
rec : BYTE;
rndm : array4;
END RECORD; . .- -

TYPE lcbREC is RECORD
state BYTE;
dest : BYTE; . A
dest chg : BYTE;
strgSz BYTE; a-...

name STRING;

274

• ..

.. ?. ' 5' . . - - -.-- .
-.

. . ." -. ..,, " .. [i.[-" .- .?" ,.- [[-[. .. _ .. _ .., _ .-.-". _ _. .- -'--
" '

link : INTEGER;
fcbA :fcbREC;
fcbB :fcbREC;
sndQ : INTEGER;
rcvQ :INTEGER;
filQ : INTEGER;
namQ :INTEGER;
search :BOOLEAN;
fileopen :BOOLEAN;
endFile : BOOLEAN;
cnt rem&in :array4;
act :BOOLEAN;
line cnt : INTEGER;
wait :BOOLEAN;
END RECORD;

TYPE buffer is RECORD
dst :BYTE;
src :BYTE;
typ : BYTE;
cksum: BYTE;
len : array2;
data :array512;
frm len: INTEGER;
END RECORD;

runfilFCB :fcbREC; >:-
mem manag tbl: ARRAY(l. .max mem blk) OF INTEGER;
used blk :INTEGER;
trnsQ : INTEGER;
bytaddr : BYTE;
srcprt : BYTE;
dst -prt : BYTE;
prt : INTEGER;
data : byte;
ptr :integer;
org ocwl : byte;
mem : ARRAY(1. .max mem blk) OF buffer;
lcb :ARRAY(O. .head) O'F lcbREC;
loopcnt : INTEGER;
cksum-snt : BYTE;
bytcnt :INTEGER;
act,CTS : BOOLEAN;
byt,ch : BYTE;
free blk :INTEGER;
quit-received: BOOLEAN;
bytfor-prtchg: BYTE;
bell on : BOOLEAN;
mailbox : BOO LEAN;
verbose : BOOLEAN;
runf il : BOOLEAN; %4
int :INTEGER;

275

'9 T . Td ~ wL~ , V. 'Y " T4' " . " 4 . .Y ! - .4 4 . .r . ° ° " ''' ' - o. %

found : BOOLEAN;
runfilQ : INTEGER;
estab : BOOLEAN;
loggedin BOOLEAN;
printer : INTEGER;

END global;

with global;
PACKAGE library is
use global;

PROCEDURE activate(prt : IN INTEGER);

PROCEDURE deactivate(prt : IN INTEGER); .0.

PROCEDURE get memory(blk : OUT INTEGER);

FUNCTION arr to int(arr : IN array2) RETURN INTEGER;

PROCEDURE give memory(blk : IN INTEGER);

PROCEDURE put in trnsQ(blk : IN INTEGER);

FUNCTION inc arr(arr : IN array2) RETURN array2;

PROCEDURE prompt;

PROCEDURE add to Q(blk IN INTEGER);

END library;

with bit, util, asmlib, global;
PACKAGE BODY library isuse bit, util, asmlib, global;

PROCEDURE addtoQ(blk : IN INTEGER) is
ptr INTEGER;
BEGIN

ptr := blk;
LOOP

EXIT WHEN memmanag_tbl(ptr) = 0;
ptr := mem managtbl (ptr);

END LOOP;
memmanag tbl(ptr) := blk;END add to Q5;..-.

PROCEDURE prompt is
BEGIN

NEWLINE;
IF prt = head THEN

PUT ("all") ;
ELSE "* '

276-S276;"''

"A? ,'

r;P~~~o "pP 7,. I K

PUT (prt);
END IF;
PUT('>') ;

END prompt;

PROCEDURE activate(prt IN INTEGER) is
BEGIN

IF NOT lcb(prt).act THEN
lcb(prt).link := lcb(head).link;
lcb(head).link := prt;
lcb(prt).act := TRUE;

END IF;
END activate;

PROCEDURE deactivate(prt : IN INTEGER) is
ptr INTEGER;
BEGIN

IF lcb(prt).act THEN
ptr := prt;
LOOP

EXIT WHEN lcb(ptr).link = prt;
ptr := lcb(ptr).link;

END LOOP;
-" lcb(ptr).link := lcb(prt).link;

lcb(prt).act FALSE;
END IF;

END deactivate;

PROCEDURE get memory(blk OUT INTEGER) is
BEGIN

if free blk > 0 then
blk free blk;
free blk := mem managtbl(blk);
mem manag_tbl(blk) := 0;
used blk := used blk + 1;

else
blk 0;

end if;
END getmemory;

FUNCTION arr to-int(arr IN array2) RETURN INTEGER is
int : INTEGER; ,
BEGIN

poke(int'ADDRESS,arr(2))-
poke(int'ADDRESS+I,arr(i)); t
RETURN int;

END arr to int; -
--

PROCEDURE give memory(blk IN INTEGER) is
old INTEGER;
BEGIN

277 .- ',

. .. . ° ° . . . ° . o -

old free blk;
free blk :=-blk;
memmanag tbl(blk) old;
used blk := used blk - 1;

END give_memory;

PROCEDURE put in trnsQ(blk : IN INTEGER) is
ptr : INTEGER;
BEGIN

mem(blk).frm-len := mem(blk).frmlen + hdrlen;
IF trnsQ = 0 THEN

trnsQ := blk;
ELSE-

add to Q(trnsQ);
END IF;

END put in trnsQ;

FUNCTION incarr(arr : IN array2) RETURN array2 is
int : INTEGER;
rslt : array2;
BEGIN

int arr to int(arr);
int := int + ;rslt(1) :-hi(int) ; Z

rslt(2) : lo(int);
RETURN rslt;

END incarr;

END library;

pragma warning(OFF);
pragma debug(OFF);

with util, bit, io, strlib, library, global, asmlib;
PACKAGE BODY filexfer is
use util, bit, io, strlib, library, global, asmlib;
asciiFF : CONSTANT BYTE := BYTE(16#OC#);

PROCEDURE parse(blk : IN INTEGER; fcb IN OUT fcb REC;
eol : OUT BOOLEAN) is

front,middle,rear : INTEGER;
done BOOLEAN;

BEGIN
done FALSE; --..

outer: LOOP
EXIT WHEN done;
done := TRUE;
front := 1;
eol := TRUE; '.-

IF mem(blk).data(front) = asciicomma THEN
front := front + 1; '.

278 - -

"",.

.rv. 7. _6 VA 1U1).- k -wi A z ~

END IF;
LOOP --remove spaces, etc

EXIT outer WHEN front > mem(blk).frm len;
EXIT WHEN mem(blk).data(front) > asciispace;
front := front + 2;

END LOOP;

* ~. p.

middle := front;
LOOP

EXIT WHEN middle > mem(blk).frm len
OR mem(blk).data(middle) = asciiperiod
OR mem(blk).data(middle) = asciicomma;

middle := middle + 1;
END LOOP;

rear := middle;
LOOP

EXIT WHEN rear > mem(blk).frmlen
OR mem(blk).data(rear) = asciicomma;

rear := rear + 1;
END LOOP;

fcb.drv BYTE(INTEGER(current dsko)+1); --set drive

IF mem(blk).data(front+l) = asciicolon THEN
CASE mem(blk).data(front) is

WHEN asciiA. asciiP =>
fcb.drv:= BYTE(INTEGER(mem(blk) .data(front))
- INTEGER(asciiat));
front := front + 2;

WHEN ascii a..asciip => a

fcb.drv := BYTE(INTEGER(mem(blk) .data(front))
- INTEGER(asciia)+i);
front := front + 2;

WHEN others => done FALSE;
END CASE;

END IF;
IF front = middle THEN

EXIT outer;
END IF;
LOOP --remove spaces

EXIT WHEN mem(blk).data(front) > asciispace;
front := front + 1; ,-._-

END LOOP;
ptr := 1;
innerl: LOOP --make assign

CASE mem(blk).data(front) is a

WHEN asciiA..asciiZ asciizero..asciinine
asciiquest ! asciiunderln =>
fcb.name(ptr) := mem(blk).data(front);

279 1
A A.

""" ' ""-"""""" a ''. " "" .'''¢ .'.¢''-;°.i''£ """ -€% -" -. -€"€ "" ' '% .v." "

WHEN ascii a..ascii z =>

mem(blk).data(front) := capital(mem(blk) .data(front));
fcb.name(ptr) := mem(blk) .data(front);

WHEN asciiasterisk =>
inner3: LOOP

EXIT innerl WHEN ptr > 8;
fcb.name(ptr) := asciiquest;
ptr := ptr + 1;

END LOOP inner3;
WHEN asciiBS =>

IF ptr > 1 THEN
ptr := ptr - 2;

END IF;
WHEN others =>

IF mem(blk).data(front) >= asciispace THEN
done := FALSE;
EXIT innerl;

END IF;
END CASE;
ptr := ptr + 1;
EXIT innerl WHEN ptr > 8;
front := front + 1;
IF front = middle THEN

LOOP
EXIT innerl WHEN ptr > 8;
fcb.name(ptr) := asciispace;
ptr := ptr + 1;

END LOOP;
END IF;

END LOOP innerl;

IF mem(blk) .data(middle) = asciiperiod THEN
middle := middle + 1;

END IF;
LOOP --remove spaces

EXIT WHEN mem(blk).data(middle) > asciispace
OR middle >= rear;

middle := middle + 1;
END LOOP;
ptr := 1;
IF middle >= rear THEN

LOOP
EXIT WHEN ptr > 3;
fcb.ext(ptr) := asciispace;
ptr := ptr + 1;

END LOOP;
ELSE
inner2: LOOP --make assign

CASE mem(blk).data(middle) is .
WHEN asciiA..asciiZ ! asciizero..asciinine

asciiquest ! asciiunderln =>
fcb.ext(ptr) := mem(blk).data(middle);

280

'ad

I,.. : '4"

'p..*:,. '.." " ."" V '/ *"' "' ' ;. - ''. ' :Z;;:2 *":"""". . "'

WHEN ascii a..ascii z =>
mem(blk).data(middle)

capital (mem(blk) .data (middle));
fcb.ext(ptr) := mem(blk).data(middle);

WHEN asciiasterisk =>
inner4: LOOP

EXIT inner2 WHEN ptr > 3; . .'-

fcb.ext(ptr) := asciiquest;
ptr := ptr + 1; V

END LOOP inner4;
WHEN asciiBS =>

IF ptr > 1 THEN
ptr := ptr - 2;

END IF; ,. ,.
WHEN others =>

IF mem(blk).data(middle) >= asciispace THEN
done := FALSE;
EXIT inner2;

*' END IF;
END CASE; -.

ptr := ptr + 1;
EXIT inner2 WHEN ptr > 3;
middle := middle + 1;
IF middle = rear THEN

-: LOOP
EXIT inner2 WHEN ptr > 3;
fcb.ext(ptr) := asciispace;
ptr := ptr + 1;

END LOOP;
END IF;

END LOOP inner2;
END IF;
FOR i IN rear..mem(blk).frm len LOOP

mem(blk).data(i+l-rear) mem(blk).data(i);
END LOOP;
mem(blk).frmlen := mem(blk).frm len - rear + 1;
EOL := FALSE;
IF mem(blk).frm len < 0 THEN

mem(blk).frm-len 0;
END IF;

END LOOP outer;
e, END parse;

PROCEDURE create FCB(blk IN INTEGER) is
prt INTEGER;-
rslt INTEGER;
BEGIN

prt := INTEGER(mem(blk).src);
IF lcb(prt).state = sending OR lcb(prt).state =

receiving THEN ,..-

PUT("cannot open another file for this destination");
mem(blk).dst mem(blk).src;

281

.,

* -.... -..- %--- .- --

mem(blk).src src_prt;
mem(blk) .typ unable;
mem(blk).cksum BYTE(O);
mem(blk).len(l) BYTE(O);
mem(blk).len(2) :=BYTE(O);
mem(blk) .cksum cksum(mem(blk) 'ADDRESS,hdr-len);

put_in-trnsQ(blk);ELSE .
IF verbose THEN

PUT("lreceiving file "1);
FOR i IN 1-.8 LOOP

lcb(prt).FCBb.name(i) :=mem(blk).data(i);
prntdata(lcb(prt) .FCBb.name(i));

END LOOP;
PUT('.');

FOR i IN 1-.3 LOOP
lcb(prt) .FCBb.ext(i) :=mem(blk) .data(i+8);
prntdata(lcb(prt) .FCBb.ext(i));

END LOOP;
END IF;
lcb(prt).FCBb.drv :

F. ~BYTE (INTEGER (current-dsk())+1); --set drive
create file(lcb(prt) .FCBb'ADDRESS,rslt);
IF rslt = 0 THEN

lcb(prt).state := receiving;
lcb(prt).fileopen TRUE;
lcb(prt).FCBb.extnt := 0;

1 lcb(prt).FCBb.rec :=BYTE(O);
lcb(prt).line cnt 0;
IF mem(blk) .dst 1=broadcast THEN

mem(blk).dst :=mem(blk).src;
mem(blk) .src :=src prt;
mem(blk).typ acklast;
mem(blk).cksum BYTE(O);
mem(blk).len(l) :=BYTE(O);
mem(blk).len(2) :=BYTE(O);
mem(blk) .cksum:=cksum(mem(blk) 'ADDRESS,hdr-len);
put-in-trnsQ(blk);

ELSE
give-memory(blk);

END IF;
ELSE

PUT(" OUT OF DISK SPACE");
mem(blk).dst :=mem(blk).src;
mem(blk).src src_prt;

* mem(blk).typ :=unable;
mem(blk).cksum :=BYTE(0);
mem(blk).len(1) :=BYTE(0);

2.. mem(blk).len(2) :=BYTE(0);
mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS,hdr len);
put in trnsQ(blk);

END IF;-

282

END IF;
END createFCB;

PROCEDURE receive file(blk IN INTEGER). is
prt :INTEGER;
ptr :INTEGER;

4succ BOOLEAN;

BEGIN
prt :=INTEGER(mem(blk).src);
IF lcb(prt).fileopen AND lcb(prt).state =receiving THEN

K: setDMA(mem(blk) .data(1) 'ADDRESS);
lcb(prt).FCBb.Rsize := 512;
IF mem(blk).cksum = BYTE(0) THEN --cksum OK

write file(lcb(prt) .FCBb'ADDRESS,succ);
IF verbose THEN

PUT("G");
lcb(prt).line cnt :=lcb(prt).line cnt + 1; -
IF lcb(prt).line-cnt =80 THEN

NEW__LINE;
lcb(prt).line cnt :=0;

END IF;
END IF;

ELSE
IF verbose THEN

PUT("B") ;
lcb(prt).line cnt :=lcb(prt).line cnt + 1;
IF lcb(prt).line-cnt =80 THEN

NEWLINE;
lcb(prt).line cnt 0;

END IF;
END IF;
succ :=FALSE;

END IF;
IF mem(blk).dst /= broadcast THEN

IF succ THEN
mem(blk).dst mem(blk).src;
mem(blk).src :=src prt;

* mem(blk).typ acklast; -

mem(blk).cksum BYTE(0);
* mem(blk).len(l) :=BYTE(0);

Z mem(blk).len(2) BYTE(0);
mem(blk) .cksum:=cksum(mem(blk) 'ADDRESS,hdr len);
put in trnsQ(blk);

*ELSE%
mem(blk).dst :=mem(blk).src;
mem(blk).src :=src prt;
mem(blk).typ :=badtrns;
mem(blk).cksum BYTE(0);V

mem~bk).ln~l) BYTE*p;

mem(blk).len(1) BYTE(0);
mem(blk) .cksum:=cksum(mem(blk) 'ADDRESS,hdr-len);

% .0

283

put in trnsQ(blk);
END IF;

ELSE
give -memory (bik);

END IF;
ELSE

mem(blk).dst:=mem(blkc).src;

Imem(blk).stc 1 rocasrtTE

mem(blk).len(1) :=BYTE(O);

mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS,hdr_len);
put in trnsQ.(blk);

ELSE
give -memory(blk);

END IF;
END IF;

END receive__file;

PROCEDURE closeFCB(blk IN INTEGER) is

prt INTEGER;
rslt INTEGER; I.V1

5. BEGIN
prt :=INTEGER(mem(blk).src);

AIF lcb(prt).state /= receiving THEN
4 mem(blk).dst :=mem(blk).src;

mem(blk).src src-prt;
mem(blk).typ :=unable;
mem(blk).cksum BYTE (0);
mem(blk).len(l) BYTE(O);
mem(blk).len(2) :=BYTE(O);

mem(blk) .cksum cksum(mem(blk) 'ADDRESS,hdr-len);
put_in_trnsQ(blk);

ELSE
close file(lcb(prt) .FCBb'ADDRESS);
lcb(prt).state :=ready;
lcb(prt).fileopen := FALSE;
IF mem(blk).dst 1=broadcast THEN

mem(blk).dst :=mem(blkc).src;

mem(blk).src :=srcprt; 5

mem(blk).typ acklast;
mem(blk).cksum BYTE(0); .

mem(blk).len(l) :=BYTE(O);
mem(blk).len(2) BYTE(0);
mnem(blk).cksum :=cksum(mem(blk)'ADDRESS,hdr-len);
put in_trnsQ(blc);

* ELSE
give memory(blk);

END IF; :.
END IF; * '

284

* ,% N;

END closeFCB;

PROCEDURE send file(prt IN INTEGER) is
bik INTEGER; 44

found BOOLEAN;
*EOL BOOLEAN;

rslt INTEGER;

BEGIN
IF lcb(prt).namQ =0 THEN ~

lcb(prt).state :=ready;
RETURN;

END IF;
IF lcb(prt) .search- THEN

IF lcb(prt).fileopen THEN__
IF lcb(prt).endFile THEN

close~file (lcb(prt) .FCBb'ADDRESS);-
IF verbose THEN

lcb(prt).line cnt :=0;
prompt;

END IF;
get memory(blk); q
mem(blk).dst lcb(prt).dest;
mem(blk).src :=srcprt;
mem(blk).typ global.EOF;
mem(blk).cksum. BYTE(0);
mem(blk).len(l) BYTE(0);
mem(blk).len(2) BYTE(2);
mem(blk).data(l) asciiCR;
mem(blk).data(2) asciiFF;
mem(blk).frm len hdr len + 2;
mem(blk).cksum

cksum(mem(blk) 'ADDRESS,mem(blk) .frm len); 6

lcb(prt).filQ blk;
lcb(prt) .state repeatsnd;
lcb(prt).fileopen :-FALSE;

ELSE
get memory(blk); .
mem(blk).frn len :=512;
setDMA(mem(blk) .data(l) 'ADDRESS);
lcb(prt).FCBb.Rsize :=512;
read file(lcb(prt) .FCBb'ADDRESS,rslt);.* ..

CASE rslt is
WHEN 0 => null;
WHEN 1 =>

lcb(prt).endfile TRUE;
WHEN 2 => null; -

WHEN 3 =>
lcb(prt).endfile := TRUE;

END CASE;
IF rslt =0 OR rslt =3 THEN

* 285

mem(blk).dst lcb(prt).dest;
mem(blk).src src prt; *-

mem(blk).typ filedat;
mem(blk).cksum BYTE(O);
mem(blk) .len(1) hi(mem(blk) .frm len);
mem(blk) .len(2) lo(mem(blk) .frmlen);
mem(blk).frm len:=mem(blk).frm len+hdr len;
mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS,
mem (blk) .f rm len) ;
lcb(prt).filQ blk;
lcb(prt).state repeatsnd;

ELSE
give memory(blk);

END IF;
END IF;

ELSE
setDMA(lcb(prt) .FCBb'ADDRESS);
search_nxt(lcb(prt) .FCBa'ADDRESS, found);
IF found THEN

IF verbose THEN
NEW LINE;
PUT("lsending file 11);
FOR i IN l. .8 LOOP

prntdata(lcb(prt) .FCBb.name(i));
END LOOP;
PUT (".* t ;

FOR i IN 1.-3 LOOP
prntdata(lcb(prt) .FCBb.ext(i));

END LOOP;
NEWLINE;

END IF;
open file(lcb(prt) .FCBb'ADDRESS, found);
lcb(prt).FCBb.Rsize 512;
lcb(prt).FCBb.extnt 0;
lcb(prt).FCBb.rec BYTE(O);

glcb(prt).fileopen TRUE;
lcb(prt).cnt remain :=lcb(prt).FCBb.Fsize;
lcb(prt).endfile :=FALSE;
get memory (blk);
mem(bl]).dst lcb(prt).dest;
mem(blk).src src prt;
mem(blk).typ sendfile;
mem(blk).cksum :=BYTE(O); .'

mem(blk).len(l) BYTE(0);,
mem(blk).len(2) BYTE(35);
FOR i IN 1.".8 LOOP

mem(blk).data(i) :=lcb(prt).FCBb.name(i);
END LOOP;
FOR i IN 1.-3 LOOP

mem(blk).data(i+8) :=lcb(prt).FCBb.ext(i);
END LOOP;
mem(blk).data(12) :=asciiLF;

286

mem(blk).data(13) asciiCR;
FOR i IN 21.-20 LOOP

IF i <= LENGTH(lcb(head).name) THEN
mem(blk) .data(13+i)

cony_byt(lcb(head) .name(i));
ELSE

Emem(blk) .data(13+i) :=asciispace;
END IF
EDLOOP;

mem(blk).data(34) asciiLF;
mem(blk).data(35) asciiFF;
mem(blk).frm len 35 + hdr len;
mern(blk).cksum

cksum(mem(blk) 'ADDRESS,mem(blk) .frm-len);
lcb(prt).-filQ bik;
lcb(prt).state repeatsnd;

ELSE
lcb(prt).search :=FALSE;

END IF;
END IF;

ELSE
* parse(lcb(prt) .namQ,lcb(prt) .FCBa,EOL);

IF EOL THEN
lcb(prt).state :=ready;
give_memory(lcb(prt) .namQ);
lcb(prt).namQ :=0;
IF prt = printer THEN

outport (dat, code endprint);
printer := 99;

END IF;
ELSE

setDMA(lcb(prt) .FCBb'ADDRESS);
search_frst(lcb(prt) .FCBa'ADDRESS, found);
IF found THEN

IF verbose THEN
NEW LINE;
PUT("lsending file")
FOR i IN 1. .8 LOOP

prntdata(lcb(prt) .FCBb.name(i));
END LOOP;
PUT(". 11)
FOR i IN 1.-3 LOOP

prntdata(lcb(prt) .FCBb.ext(i));
END LOOP;
NEWLINE;

END IF;
lcb(prt).search :=TRUE;
open file(lcb(prt) .FCBb'ADDRESS,found);
lcb(prt) .cnt remain := lcb(prt) .FCBb.Fsize;
lcb(prt).fileopen TRUE;
lcb(prt).endfile :=FALSE;
get memory(blk);

287

AD-A±?3 595 JAUS/ADA IMPLEMENTAT ION OF A STAR CLUSTER NETWORX OF' 4
PERSONAL COMPUTERS N..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA R L HARTMAN ET AL. JUN896

UNCLSSIFIED FO 17/2 ML

mooIhhhhhhhhhhhhl

- -. ~ ~ ~. w--..Nb!

11111L321.0 W 020

W 1.2.

MICROCOPY REOUINTEST CHART
'-"NATIONAL BURfAU Of STANDAR DS 19(, A

61 %

mem(blk).dst :=lcb(prt).dest;
mem(blk).src =src prt;
mem(blk).typ :~sendfile;
mem(blk).cksum BYTE(O);
mem(blk).len(l) :=BYTE(O);
mem(blk).len(2) BYTE(35);
FOR i IN l..8 LOOP

mem(blk) .data(i) :=lcb(prt) .FCBb.name(i);
END LOOP;
FOR i IN 1..3 LOOP

mem(blk) .data(i+8) :=lcb(prt) .FCBb.ext(i); "Ie
END LOOP;
mem(blk).data(12) :=asciiLF;
mem(blk).data(13) :~asciiCR;
FOR i IN -1..20 LOOP

IF i <= LENGTH(lcb(head).name) THEN
mem(blk) .data(13+i) :=

ELSE cony byt(lcb(head).name(i));
ELSE- *

mem(blk) .data(13Ii) := asciispace; I

END IF; .

END LOOP;
mem(blk).data(34) :=asciiLF;
mem(blk).data(35) :=asciiFF;
mem(blk).frm len :=35 + hdr len;
mem(blk).cksum

cksum(mem(blk) 'ADDRESS,mem(blk) .frm-len);
lcb(prt).filQ bik;
lcb (prt).state =repeatsnd;

END IF;
END IF;

END IF; -~

END send file;

PROCEDURE send dir(prt :IN INTEGER) is
blk : INTEGERZ;
found :BOOLEAN;
EOL : BOOLEAN;
ptr :INTEGER;
total INTEGER;
line-tot: INTEGER;

BEGIN

IF lcb(prt).namQ =0 THEN
lcb(prt).state :=ready;
RETURN;

END IF;
ptr := 0;
total :=0;
line tot := 0;
blk 7=lcb(prt).filQ;

288

If- , I*

LOOP
-' IF lcb(prt).search THEN

setDHA(lcb(prt) .FCBb'ADDRESS);
search nxt (lcb (prt) .FCBa' ADDRESS, found);
IF founid THEN

IF line tot = 0 THEN
ptr :=ptr + 1;
mem(blk) .data(ptr)
BYTE(INTEGER(lcb(prt) .FCBb.drv) + 64);

END IF;
ptr :=ptr + 1;
mem(blk).data(ptr) :=asclicolon;
ptr := ptr + 1;
mem(blk).data(ptr) asciispace; - 5

FOR i IN .1. .8 LOOP
ptr := ptr + 1;
mem(blk) .data(ptr) :=lcb(prt) .FCBb.name(i);

END LOOP;
ptr := ptr + 1;
mem(blk) .data(ptr) :=asciiperiod;
FOR i IN 1..3 LOOP

ptr :=ptr + 1;
mem(blk) .data(ptr) :- lcb(prt) .FCBb.ext(i);

END LOOP;
ptr :=ptr + 1;
mem(blk).data(ptr) := asciispace;
line tot := line tot + 1;
IF line tot =4 THEN

line tot :=0;
ptr :=ptr + 1;
mem(blk).data(ptr) :=asciiCR;
ptr :- ptr + 1;
mem(blk).data(ptr) :=asciiLF;

END IF;
total := total + 1;
IF total = 32 THEN

*mem(blk).dst lcb(prt).dest;
mem(blk).src srcprt;

*mem(blk).typ dir data;
mem(blk).cksum BYTE(O);
mem(blk).len(l) :=hi(ptr);
mem(blk).len(2) lo(ptr);
mem(blk).frm len ptr + hdr len;
mem(blk).cksum :

cksum(mem(blk) 'ADDRESS,ptr+hdr len);
put in trnsQ(blk);
lcb (prt) .f ilQ :=0;
EXIT;

END IF;
* ELSE

lcb(prt).search FALSE;
Vt END IF;

289

ELSE
N parse(lcb(prt) .namQ,lcb(prt) .FCBaEOL);

IF EOL THEN
lcb(prt).state :=ready;
give memory(lcb(prt) .namQ);
IF ptr /= 0 THEN

mem(blk).dst :=lcb(prt).dest;
mem(blkc).src :=srcprt; .

* mem(blk).typ :=dir data;
* mem(blkc).cksum :=BYTE(O);

mem(blkc).len(l) :-hi(ptr);
mem(blkc).len(2) :=lo(ptr);
mem(blk).frm-len :=ptr + hdr-len;
mem(blk).cksum :

.cksum(mem(blk) 'ADDRESS,ptr+hdr-len);
put-in -trnsQ(blk);
EXIT;

ELSE
give -memory(blk);
EXIT;

END IF;
END IF;
setDI4A(lcb(prt) .FCBb'ADDRESS);
search frst (lcb (prt).FCBa 'ADDRESS,found);
IF found THEN

lcb(prt).search := TRUE;
IF line tot = 0 THEN

S ptr :=ptr + 1;
mem(blc) .data(ptr)
BYTE(INTEGER(lcb(prt) .FCBb.drv) + 64);

a.' END IF;
ptr := ptr + 1;
mem(blk).data(ptr) :=asciicolon;

ptr :- ptr + 1;
mem(blk).data(ptr) :=asciispace;
FOR i IN l..8 LOOP

N. ptr := ptr + 1;
K mem(blk) .data(ptr) := lcb(prt) .FCBb.name(i);

END LOOP;
ptr := ptr + 1;
mem(blk).data(ptr) := asciiperiod;
FOR i IN l..3 LOOP

ptr := ptr + 1;
mem(blk) .data(ptr) :=lcb(prt) .FCBb.ext(i);

END LOOP; b

p tr := ptr + 1;
mem(blk).data(ptr) := asciispace;
line-tot := line tot + 1;
IF line tot =4 'THEN .*

line tot :=0;
ptr := ptr + 1;
mem(blk).data(ptr) :=asciiCR; .

290

I C ..- %

ptr :=ptr + 1;
mem(blk).data(ptr) :=asciiLF;

END IF;
total :=total + 1;
IF total = 32 THEN

mem(blk).dst :=lcb(prt).dest;
mem(blk).src :=src_prt;
mem(blk) .typ :=dir data;
mem(blk).cicsum BYTE(O);
mem(blk).len(l) :=hi(ptr);
mem(blk).len(2) :=lo(ptr);
mem(blk).frm-len :=ptr + hdr-len;
mem(blk).cksum
putincksum (mem (bik) 'REptr+hdr-len);

ptittrnsQ (blk);
EXIT;-

END IF;
END IF;

END IF;
END LOOP;

END send__dir;

PROCEDURE information(prt :IN INTEGER) is
bik : INTEGER;
rslt INTEGER;
ptr :INTEGER;

-p- 00

BEGIN
outer: LOOP

IF lcb(prt).fileopen THEN
blk :=lcb(prt).filQ;
IF mem(blk).frm len = 0 THEN

lcb(prt).FCBb.Rsize := 512;
setDMA(mem(blk) .data(1) 'ADDRESS);
read -file(lcb(prt) .FCBb'ADDRESS,rslt);
IF rslt = 0 OR rslt =3 THEN

mem(blk).frm-len:=1
LOOP

IF mem(blk).frm len > 512 THEN
mem(blk).frm len :=0;
EXIT;

END IF;
IF mem(blk).data(mem(blk).frm len)

BYTE(16#lA#) THEN
lcb(prt).fileopen :=FALSE; .
EXIT outer;

END IF;
IF mem(blk).data(mem(blk).frm len)

BYTE(f6#09#) THEN
mem(blk).frm len :

mem(blk).frm-len + 1;
EXIT outer;

291

mem(blk).frm-len := mem(blk).frm-len + 1;

END LOOP;1 1 ~ 1 1 ~])fmln)

00V EXIT outer;

ELSE A

IF mem(blk).frm-len > 512 THEN
mem(blk).frm len :- 0;
EXIT;

END IF;
IF mem.(blk).data(mem(blk).frm len)

BYTfE(16#lA#) THEN
lcb(prt).fileopen := FALSE;
EXIT outer;

END IF;
IF mem(blk) .data(mem(blk) .frm len) *.h.

BYTE(16#09#) THEN
mem(blk).frm. -len := mem(blk).frm-len + 1;
EXIT outer;

END IF;
prntdata(mem(blk) .data(mem(blk) .frm len));
mem(blk).frm-len :=mem(blk).frm-len + 1;

END LOOP;
END IF;

ELSE
lcb(prt).state ready;
EXIT;

END IF;
END LOOP outer;
IF lcb(prt).fileopen THEN

NEW LINE;
NEW7 LINE;
PUT("lhit space bar to continue, ''to quit");
NEWLINE;

ELSE A
close file(lcb(prt) .FCBb'ADDRESS);
give imemory(blk);
lcb(prt).filQ :=0;
lcb(prt).state :=ready;

END IF;
END information;

*END filexfer;

pragma warning(OFF);
pragma debug(OFF);

* --PACKAGE: locftp.PKG

292

--AUTHOR: robert hartman
--DATE: 1 may 86
--SYSTEM NAME: local

with filexfer,global,library, bit, asmlib, strlib, io,util;
PROCEDURE locftp is
use filexfer, global, library, bit, asmlib, strlib,io,util;

PROCEDURE handlekybd input(ch : IN BYTE) is
blk : INTEGER;
num : INTEGER;

BEGIN
CASE lcb(prt).state is

WHEN ready =>
CASE ch is

WHEN asciiT ! ascii t =>
lcb(prt).state := talk;
PUT("Talk, enter text, ^Z to send");
get memory(blk);
IF blk /= 0 THEN

lcb(prt).sndQ := blk; 2
mem(blk).frmlen := 0;
NEW LINE;

ELSE
PUT(" out of memory");

lcb(prt).state.-= ready;
prompt;

END IF;
WHEN asciiS ! asciis =>

get memory(blk);
IF blk = 0 THEN

PUT("out of memory"); NEWLINE;
lcb(prt).state := ready;
prompt;

ELSE
lcb(prt).state := sendfile;
PUT("Send <filename> enter text, ");
put("^%Z to send");
NEW LINE;
lcb(prt).namQ := blk;
mem(blk).frm len := 0;

END IF;
WHEN asciiG '! ascii g =>

get memory(blk);
IF blk = 0 THEN

PUT ("out of memory");
prompt;

ELSE
IF prt = head THEN

PUT("cannot 'get' from 'all'");
prompt;

293

-- q p ~* * S S .'-%

ELSE
lcb(prt).state :=getfile;
PUT("Get <filename> enter text, "); %;
pUt(IIAZ to get"l);

NEWLINE;
lcb(prt).sndQ := bik;
mem(blk).frm len :-0;

END IF;
END IF;

WHEN asciiQ ! asciiq =>
PUT("'Quit [confirm]");

lcb(prt).state :- quit;
WHEN asciiQuest =>

PUT("all"-) ; NEW LINE; 5

PUT("Bell"); NEWLINE;
PUT("'Change group"); NEWLINE;
PUT("'Directory"l); NEWLINE;
PUT("Get"l); NEWLINE;
PUT("Information"l); NEWLINE;
PUT ("List"); NEWLINE;
PUT ("Mailbox"); NEWLINE;
PUT ("Netstat"l); NEWLINE;
PUT("Print"l); NEWLINE;
PUT ("Quit") ; NEWLEINE;

5% PUT("'Send"); NEW LINE;

PIS: PUT("'Talk"); NEWLINE;
*6 PUT ("Verbose"l); NEWLINE;

PUT("Who's there"); NEWLINE;

PUT("1<destination 0>"); NEWLINE;
PUT"#"); NEWLINE;
PUT("?"
prompt;

WHEN BYTE(16#30#)..BYTE(16#39#) =>
prntdata(ch);
lcb(prt).dest chg := ch;
lcb(prt).state :- prtchg;

WHEN asciiw ! ascii w =>
get memory(blk);
IF blk = 0 THEN

PUT("lout of memory");
prompt;

V ELSE
V PUT("Who's there?");

EXIT *WHEN lcb(head).link =head;

deactivate(lcb(head) .link);
ST END LOOP;
.5.' mem(blk).frm len :=0; *

mem(blk) .dst :=broadcast;
mem(blk).src :=srcprt;
mem(blk).typ :=whothere;

294

b

of. ..

mem(blk).len(1) BYTE(0);
mem(blk).len(2) := BYTE(O);
mem(blk).cksum BYTE(0);
mem(blk).cksum

cksum(mem(blk) 'ADDRESS,hdr len);
put intrnsQ(blk);
prompt;

END IF;
WHEN asciiN ! ascii

n =>

PUT ("Netstat");
outport(dat,code status);

inport(statdata) ;xy

EXIT WHEN tstbit (INTEGER (data) ,RxRdy) ; --.
END LOOP;
inport (dat, data);
prompt;

WHEN asciiL ! ascii 1 =>
PUT ("List") ; NEWLINE; .. -

ptr := lcb(head).link;
PUT ("term #, name,
put ("state of connection");
NEW LINE;
LOOJP

EXIT WHEN ptr = head;
PUT(ptr) ; PUT("> ");
IF ptr < 10 THEN

PUT(" ");
END IF;
PUT(lcb(ptr).name);
FOR i IN LENGTH(lcb(ptr).name) ..20 LOOP '

PUT(" ")
END LOOP;
CASE lcb(ptr) .state is

WHEN ready =>
PUT(" ready");
WHEN sending =>
PUT(" sending");
WHEN getfile =>
PUT(" getfile");
WHEN repeatsnd =>
PUT ("repeat transmission");
WHEN wait for ack =>
PUT("wait-for-acknowledgement");
WHEN receiving =>
PUT ("receiving") ;

a WHEN dir =>
PUT ("Directory") ;
WHEN others =>
PUT(" unknown state");

END CASE;
NEW LINE; *

295

" . - - " . - - .4..-- - .

ptr lcb(ptr).link;
END LOOP;
PUT("'Your terminal number is") ,*

PUT(INTEGER(srcrt)
prompt;

pt ;

WHEN asciiA ! ascii a =>

lcp rt.Crtxt2 := asciiX
lcb~prt).F= broact; =asi

oe lcb(prt)~r := BYTDESfoud)

ge~pt memoryblkae);aci

lcb(prt).filQnme3) ascbik;

lcb(prt).fileopaei :- TRUE; pce

lcb(prt).FCBb.extnt) := 0;
lcb(prt).FCBb.rec(3 := BYTO;

meemok.rm blen 0

inorao(prt);~xn =0

prndabcbprt) .FC~ec Bbnam(i))

NED LOOP;

FOR i IN 1-83 LOOP
prntdata(lcb(prt) .FCBb.ext(i));

END LOOP;

PUT(" not on current logged disk");

END IF;

WHEN asciiD ! ascii d =>
lcb(prt).state : dir; !

pPUT("'Directory, enter text , AZ to send");
get memory(blk);
IF Elk /= 0 THEN

1lcb (prt) .sndQ := bik;
mem(blk).frm len :=0;

296

NEWLINE;
ELSE *

PUT("lout of memory");
lcb(prt).state :=ready;I prompt;

END IF;
WHEN asciiB ! ascii b =

IF bell on THEN
bell on := FALSE;I PUT(T-Bell-OFF");

ELSE
bell on := TRUE;
PUT("Bell-ON"I);

END IF;
prompt;

WHEN asciiM ! ascii m =>
IF mailbox THEN I--

mailbox :=FALSE;
PUT ("Mailbox-OFF")

ELSE
mailbox :=TRUE;
PUT("'Mailbox-ON"1);

END IF;
prompt;

WHEN asciispace =>
IF lcb(prt).state = info THEN

information(prt);
ELSE

prompt;
END IF;

WHEN asciiV ! ascii v =>
IF verbose THEN

PUT ("Verbose-OFF");
verbose :=FALSE;

ELSE
PUT ("Verbose-ON"I);
verbose :=TRUE;

END IF;
prompt;

WHEN asciilbs =>
ilUT("'destination terminal is now")
put("lyour terminal");
prt := INTEGER(srcprt);
dst_prt :=srcprt;
prompt;

WHEN asciiP ! ascii_p =>
IF used bik >= max mem bik - 1 THEN L"

PUT("out of memory"); NEW LINE;
lcb(prt).state := ready;
prompt;

ELSE *f

outport (dat, code print);

297

LOOP
inport (stat,data);
IF tstbit (INTEGER (data) ,RxRdy) THEN

inport (dat, data);
IF data <= BYTE(num_prts) THEN

estab :=TRUE;
printer :=INTEGER(data);
prt :=printer;
dst prt :=data; -

lcb(prt).state :=sendfile;
PUT("Print <filename> "1);
put("lenter text, AZ to print");

NEWLINE;
get memory(blk);
lcb(prt).namQ :=bik;
mem(blk).frm-len :=0;
EXIT;

ELSE
PUT("Printer busy");
prompt;
EXIT;

END IF;
END IF;

END LOOP;
END IF;

WHEN asciiC ! ascii c =>
PUT("'Change group, enter destination #)
outport(dat,code_cis);
estab := FALSE;
mailbox := TRUE;

WHEN asciiCR =>
prompt;

WHEN others =>
PUT("lunrecognized command,")
put("ltype '?' for command list");
prompt;

END CASE;
WHEN talk =>

blk :=lcb(prt).sndQ;
CASE ch is ',7
WHEN asciicntlR =>

NEW LINE;
FOR i IN l..mem(blkc).frm len LOOP

prntdata(mem(blc) .data(i));
END LOOP;

.1'. WHEN asciicntlZ =>
mem(blk).typ :=talk;
mem(blk).len(l) :=hi(mem(blk).frm len);
mem(blk).len(2) :=lo(mem(blk).frm-len);
mem(blk).dst dstprt;
mem(blk).src srcprt;
mem(blk).cksum :=BYTE(0);

298

mem(blk) .cksum, cksum(mem(blk) 'ADDRESS,
mem(blk).frm len + hdr len);

put in trnsQ(blk);
lcb(prt).sndQ 0;
lcb(prt).state ready;
prompt;

WHEN asciicntlQ =>
NEW LINE;
PUT("'discarding entries");
give-memory (blk) ;
lcb(prt).sndQ 0;
lcb(prt).state ready;
prompt;

WHEN asciiBS ! asciiDEL =>
IF mem(blk).frm-len > 0 THEN

mem(blk).frm-len :=mem(blk).frm-len -1
prntdata kasciiBS);
prntdata (asciispace);
prntdata (asciiBS);

END IF;
WHEN others =>

mem (blk) .frm -len :=mem(blk).frm-len + 1;
mem(blk) .data(mem(blk) .frm len) :=ch;
prntdata(ch);
IF ch = asciiCR THEN

mem(blk).frm len :=mem(blk).frm-len + 1;
mem(blk) .data(mem(blk) .frm len) :=asciiLF;
prntdata (asciiLF);

END IF;
IF mem(blk).frm len = 512 THEN

mem(blk).typ talk;
mem(blk).len(l) :=hi(mem(blk).frm-len);
mem(blk).len(2) :=lo(mem(blk).frm-len);
mem(blk).dst :=dst_prt;
mem(blk) .src srcprt;
mem(blk).cksum.: BYTE(0);
mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS,

mem(blk).frm len + hdr len);
put in trnsQ(blk);
get memory(blk);
IF Elk /= 0 THEN

lcb(prt).sndQ :=bik;
ELSE

NEW-LINE;
PUT("lout of memory");
lcb(prt).sndQ 0;
lcb(prt).state ready;
prompt;

END IF;
END IF;

END CASE;

299

WHEN quit => '
IF ch =asciiCR THEN

quit received := TRUE;
PUT("1 Good-bye.");
NEWLINE;

ELSE- .1
NEWLINE;
Icb(prt).state :=ready;
prompt;

END IF;
WHEN prt chg =>

CASE ch is
WHEN BYTE(16#30#)..BYTE(16#39#) =>

prntdata(ch);
num :- Land(INTEGER(lcb(prt) .dest_chg),

INTEGER(16#OOOF#));
num :=(num * 10) +

ILarid(INTEGER(ch) ,INTEGER(16#OOOF#)); ~
num :=prt;

~~PUT(ttport num out of range");
EDIF;

WHEN asciiCR =>
num := Land(INTEGER(lcb(prt) .dest_chg),
WHNINTEGER(16#OOOF#));
WHNothers =>
num :=prt;
PUT("lbad input");

END CASE;
lcb(prt).state := ready;
prt :=num;
dst rt :=BYTE(prt);
activate (prt);
IF NOT estab THEN

outport(dat,code_local);
END IF;
prompt;

WHEN sendfile =>
bik := lcb(prt).namQ;
CASE ch is
WHEN asciicntlR =>

NEW-LINE;
FOR i IN l..mem(blk).frm len LOOP

prntdata(mem(blk) .data(i));
S END LOOP;

WHEN asciicntlZ =>
icb(prt) .state sending;
lcb(prt).search :=FALSE;
lcb(prt).fileopen FALSE;
lcb(prt).endFile :=FALSE;
lcb(prt).line cnt 0;

300

I. A ~ . I W .. W ~ .. .4..,~ . . ~ .prompt ; -. * -.. *, - ~ 7 W ?~

lcpropt.aQ 0

WHEN asciicnt ! =>iEL=

Ivememoryk.frblk); TE

lcb(t).ate e := ready;.rmle 1
lbprnt).amQ 0clB; h

prtdatacodpe)dpin)
prnter := 99;BS)

* END IF;

WHEN otherBs =>sciEL
* Fmem(blk).frm len := 0e~l).r e THEN

mem(blk).frmtlenmem(blk).frmlen 1;
prntdata(asciBS)

prntdata (asciispace).fmln aci
prntdata (asciiBS);

END IF; -
IeF lk.rln: mem(blk).frm len 11;TE
mem(blk).dat~em~l)fmln sending;
prntdata);ac FLE

* mem~lc (bk).frmoen FALE;~l)fmln+1

prtd a(siL)
END IF;

END rt.eac CASFLSE
WHENt)fieoe : FALSE;>

lcbkpr=).endile := FALSE

ECASE; i

WHEN asciicntlR =>
NEW LINE;
FOR i IN l..mem(blk).frm len LOOP

prntdata(mem(blk) .data(i));
END LOOP;

WHEN asciicntlZ => ~..
mem(blk).typ := getfile;
mem(blk).len(l) hi(mem(blk).frm len);-
mem(blk).len(2) :=lo(mem(blk).frm len);

4'. mem(blk) .dst :=dstprt; .

mem(blk).src :=src-prt;
mem(blk).cksum :=BYTE(0); .4

mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS, 2.
* 301

44 mem(blk).frm-len + hdr-len);
put in trnsQ(blk);

*lcb(prt).sndQ 0;
lcb(prt).state ready;
prompt;

WHEN asciicntlQ =>
NEW LINE;
PUT("'discarding entries");
give memory(blk);
lcb(prt).sndQ :=0;
lcb(prt).state :=ready;

WHEN asciiBS ! asciiDEL =>
IF mem (blk) .f rm -len > 0 THEN

mem(blk).frm len := mem(blk).frm-len-1.
prntdata (asciiBS);
prntdata (asciispace);
prntdata (asciiBS);

END IF;
V.WHEN others =>

mem.(blk) .f rm -len := mem(blk).frm-len + 1;
mem,(blk) .data(mem(blk) .frm. len) := ch;
prntdata(ch);
IF ch = asciiCR THEN

mem(blk).frm-len :=mem(blk).frm-len + 1;
mem(blk) .data(mem(blk) .frm len) := asciiLF;
prntdata (asciiLF);

END IF;
IF mem(blk).frm len = 512 THEN

mem(blk).typ :~getfile;
mem(blk).len(l) hi(mem(blk).frm len);
mem(blk).len(2) :=lo(mem(blk).frm-len);
mem(blk).dst dst-prt;
mem(blk).src :=src-prt;
mem(blk).cksum BYTE(O);
mem(blk) .cksum cksum(mem(blk) 'ADDRESS,

mem(blk).frm-len + hdr_len);
put -in trnsQ(blk);
lcb(prt).sndQ :=0;
lcb(prt).state ready;

END IF;
END CASE;

WHEN dir =>
blk :=lcb(prt).sndQ;
CASE ch is . .

WHEN asciicntlR =>
NEW LINE;
FOR i IN l..mem(blk).frm len LOOP

prntdata(mem(blk) .data(i));
END LOOP;r

WHEN asciicntlZ =>
mem(blk).typ dir;

302

mem(blk).len(1) :=hi(mem(blk).frm len);N
mem(blk).len(2) lo(mem(blk).frm len);
mem(blk).dst dst-prt;
mem(blk).src :=src-prt;
mem(blk).cksum BYTE(O);
mem(blk) .cksum :-cksum(mem(blk) 'ADDRESS,

mem(blk).frm len + hdr len);
put in-trnsQ(blk);
lcb(prt).sndQ 0;
lcb(prt).state :=ready;
prompt;

WHEN asciicntlQ =>
NEW LINE;
PUT("ldiscarding entries");
give memory (blk);
lcb(prt).sndQ :=0;
lcb(prt).state ready;

WHEN asciiBS ! asciiDEL =>
*IF mem(blk).frm len > 0 THEN

mem(blk).frm len :=mem(blk).frm len -1;

prntdata (asciiBS);
prntdta (sciisace)

prntdata(asciiBsp);

END IF;
* WHEN others =>

mem(blk).frm len :- mem(blk).frm len + 1;
mem(blk) .data(mem(blk) .frm len) ch;
prntdata(ch);
IF ch = asciiCR THEN

mem(blkc).frm len := mem(blk).frm len + 1;
mem(blk).data(mem(blk).frm-len) :=asciiLF; %"'
prntdata (asciiLF);

END IF;
IF mem(blk).frm-len = 512 THEN

mem(blk).typ := getfile;
mem(blk).len(1) :=hi(mem(blk).frm len);
mem(blk).len(2) lo(mem(blk).frm_len);
mem(blk) .dst dst_prt;
mem(blk).src :=srcprt; ..

mem(blk).cksum :=BYTE(0);
mem(blk) .cksum :=cksum(mem(blk) 'ADDRESS,

mem(blk).frm. len + hdr_len);
put in trnsQ(blk);
lcb(prt).sndQ :=0;
lcb(prt).state :~ready;

END IF;
END CASE;

WHEN log =>
IF ch = asciiBS OR ch = asciiDEL THEN

IF length(lcb(head) .name) > 0 THEN
lcb(head).name :=remove(lcb(head).name,
length(lcb (head) .name) ,l);

303

prntdata (asciiBS); -

prntdata (asciispace);
prntdata (asciiBS);

END IF;inet(artst(bttocrch)
ELSE

lcb~ead.name,length(lcb(head) .name)+l);
END IF;

WHEN info =>
CASE ch is

WHEN asciispace =>
information(prt);

WHEN asciiQuest =>.4
prntdata (ch); NEWLINE;
PUT("'space bar"); NEWLINE;
PUT("Quit"l); NEW_-LINE;

WHEN asciiQ ! ascii-q =>
close -file (lcb (prt) FCBb'ADDRESS);
lcb(prt).fileopen := FALSE;

4.. lcb(prt).state := ready;
V give memory(lcb(prt) .filQ);

prompt;
WHEN others =>

PUT("lunrecognized command");
NEWLINE;

END CASE;-
WHEN others =>

IF prt 1=INTEGER(srcprt) THEN
prt :=INTEGER (src prt);

Es~r := srcprt;

prt := head;
dstprt :=BYTE (head);

END IF;
NEW LINE;

16 .PUT("Process running on this connection, "1);
put("lchanging destination terminal");
prompt;

END CASE;
END handle_kybd input;

-

PROCEDURE handle incoming packet(blk :IN INTEGER) is
BEGIN

V ptr :=INTEGER(mem(blk).src); y.
IF ptr <= numprts THEN
activate (ptr);q
CASE mem(blk).typ is

* WHEN talk =>
IF lcb(prt).state /= ready THEN

I., IF lcb(ptr).rcvQ = 0 THEN

304

lcb(ptr).rcvQ bik; ..

ELSE
add -toQ(lcb(ptr).rcvQ);

END IF;
ELSE

NEW LINE; J
PUT("lmsg fr "1);%
PUT(lcb(ptr) .name); 4
PUT(ptr); PUT('>'); NEW LINE;
FOR i IN l..arr to int(rnem(blk).len) LOOP

prntdata(mem(blk) .data(i));
-' END LOOP;

IF bell on THEN
-. prntdata(asciibell);

END IF;
give_memory(blk),
prompt;

END IF;
.5.WHEN sendfile =>

createFCB(blk);
NEWLINE;

WHEN getfile =>
IF lcb(ptr) .state 1=ready THEN

IF verbose THEN
PUT("lunable to send a file at this")
put("ltime because");
IF lcb(ptr).state = sending THEN

PUT(" state of terminal is sending") ;

ELSE
PUT(" state of terminal is dir data");

END IF; NEWLINE;
END IF;
mem(blk).dst mem(blk).src;
mem(blk).src :=srcprt;
mem(blk).typ :=unable;
mem(blk).cksum.: BYTE(O);
mem(blk).len(l) BYTE(0);
mem(blk).len(2) :=BYTE(O);
mem(blk).cksum :

cksum(mem(blk) 'ADDRESS,hdr-len);
put_in_trnsQ(blk);

ELSE
lcb(ptr).state :=sending;
lcb(ptr).search :=FALSE;
lcb(ptr).fileopen := FALSE;
lcb(ptr).endfile :=FALSE;
lcb(ptr).namQ :=blk;
lcb(ptr).line cnt 0;

END IF;
WHEN filedat => S

S receive file(blk);
WHEN globaf.EOF =>

.1k,*305

close_FCB(blk);
prompt;

WHEN whothere =>
mem(blk).frm len :=0;
FOR i IN l..L:ENGTH(lcb(head).name) LOOP

mem(blk).data(i):= conv byt(lcb(head).name(i));
mem(blk).frm len :=mem(blk).frm len + 1;

END LOOP;
mem(blk).dst mem(blk).src;

IwlI-Imem(blkc).src :=srcprt;
mem(blk).typ :=ImHere;
mem(blk).len(l) :=hi(mem(blkc).frm len);
mem(blkc).len(2) lo(mem(blk).frm_len); .

mem(blk).cksum~: BYTE(O);
mem(blc) .cksum :=cksum(mem(blk) 'ADDRESS,

mem(blk).frm-len + hdr-len);
put in trnsQ(blk);

WHEN ImiHere =>

:=rto strg(mem(blk) .len(2) 'ADDRESS);
NEW-LINE;
PUT(ptr); PUT('>');
PUT(lcb(ptr) .name);
give memory (blk);
prompt;

WHEN acklast =>
IF lcb(ptr).state =wait for ack THEN

lcb(ptr).state :=sending;
give-memory(lcb(ptr) .filQ);
lcb(ptr).filQ := 0;

END IF;;

WHEN badtrns =>
PUT("lrec'd badtrns");
IF lcb(ptr).state =wait -for ack THEN

lcb(ptr).state :=repeatsnid;
END IF;
give memory(blk);

p.. prompt;
WHEN unable =>

PUT("lrec'd unable");
IF lcb(ptr).state =wait for ack THEN

lcb(ptr).state readly;
IF lcb(ptr).namQ /= 0 THEN

give memory(lcb(ptr) .namQ);
lcb(ptr).namQ :=0;

END IF;
IF lcb(ptr).filQ 1=0 THEN

give memory(lcb(ptr) .filQ);
lcb(ptr).filQ :=0;

END IF;%
END IF;

306

givememory(blk);
prompt;

WHEN dir =>
IF lcb(ptr).state /- receiving

OR lcb(ptr).state /= sending THEN
lcb(ptr).namQ := blk;
lcb(ptr).state := dir data;

END IF;
WHEN dir data =>

IF lcb(prt).state = talk OR
lcb(prt).state = sendfile THEN

IF lcb(ptr).rcvQ = 0 THEN
lcb(ptr).rcvQ := blk;

ELSE
add to Q(lcb(ptr) .rcvQ);

END IF;
ELSE

PUT ("directory fr ");
PUT(ptr); PUT('>'); NEW LINE;
FOR i IN l..arr to int(mem(blk).len) LOOP

prntdata(mem(blk) .data(i));
END LOOP;
givememory(blk);
prompt;

END IF;
WHEN code status =>

NEW LINE;
PUT(" Naval Postgraduate ");
put("School AEGIS Local Area Network");
NEW LINE;
PUT(1" programmed by:");
NEW LINE;
PUT(1" Robert Hartman and ");
put ("Alec Yasinsac");
NEW LINE;
PUT(-" advisor: Prof. U. ");
put("Kodres");
NEW LINE;
PUT('"Network Status information follows: Your .);
put("terminal No. is ");
PUT(ptr);
NEW LINE;
PUT("Local memory blocks in use/total is ");
PUT (used_blk);
PUT('/') ;
PUT(maxmemblk);
NEW LINE; 7
PUTT"term pcb state local addr tcp state ");
PUT ("term pcb state local addr tcp state");
NEWLINE;

FOR i IN 0..INTEGER(mem(blk).data(1)) LOOP

307

3 0 7 . **.%

PUT (i);I)

IF i < 10 THEN

ELSEI PUT(
END IF;
CASE mem(blk).data(2+(i*4)) isA

WHEN-BYTE(0) => PUT ("closed");
WHEN BYTE(i) => PUT("lt init");
WHEN BYTE(2) => PUT("ltelnet"l);
WHEN BYTE(3) => PUT("lf init")*;
WHEN BYTE(4) => PUT(lftp 9);
WHEN BYTE(5) => PUT("llstn")
WHEN BYTE(6) => PUT(1 miit"l);

41 ~WHEN BYTE(7) => PUT("llocal "1);

WHEN BYTE(8) => PUT("lclsirig");
WHEN others => PUT("unkwn IN);.

END CASE;
PUT("
PUT(INTEGER(mem(blk) .data(3+(i*4))));
IF (INTEGER(mem(blk).data(3+(i*4)))) < 10 THEN

V. PUT(" "
L~.JhELSE IF (INTEGER(mem(blk).data(3+(i*4)))) < 100

THEN
PUT(".1)

ELSE PUT("")
END IF;
END IF;
PUT(INTEGER(mem(blc) .data(4+(j*4))));
IF (INTEGER(mem(blk).data(4+(i*4)))) < 10 THEN

PUT("")
ELSE IF (INTEGER(mem(blk).data(4+(i*4)))) < 100

THEN
PUT("1

ELSE PUT(" ")
END IF;
END IF;
CASE mem(blk).data(5+(i*4)) is *jJ

WHEN BYTE~i) => PUT("'listen ")
WHEN BYTE(2) => PUT("lsyn st
WHEN BYTE(3) => PUT("syn_rcv
WHEN BYTE(4) => PUT("lestab")WHNBT() >PTCfn at11)
WHEN BYTE(5) => PUT(lf in-wait_ 1 ");

WHEN BYTE(7) => PUT("1close wait 1);
WHEN BYTE(8) => PUT("lclosing)

WHEN BYTE(9) => PUT("'last_acc 1);
0 ~WHEN BYTE(10) =>PUT("ltime_wait 1);

WHEN others => PUT("closed "
END CASE;
IF i rem 2 = 1 THEN

NEWLINE;

308

END IF;
END LOOP;
IF verbose THEN

PUT ("number of used blocks/total: ");
ptr := INTEGER(mem(blk).data(l)) * 4 + 6;
PUT(INTEGER(mem(blk) .data(ptr)));
PUT('/'),;-*.'

ptr := ptr + 2;
PUT(INTEGER(mem(blk) .data(ptr)));
NEWLINE;
ptr := ptr + 2;
PUT("TCBs in use/total: -);
PUT(INTEGER(mem(blk) .data(ptr)));PUT (' / ') ; "

ptr := ptr + 1;
PUT(INTEGER(mem(blk).data(ptr)));
NEW LINE; • -
PUT(-"Ethernet controller board status follows:");
NEWLINE;
ptr := ptr + 4;
PUT("Ethernet physical address is ");
FOR i IN 1..6 LOOP

PUT(INTEGER(mem(blk) .data(ptr)));
PUT (". ") ;
ptr := ptr + 2;

END LOOP;
NEW LINE;
PUT(I"frames received ")
PUT(two bytes (mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT ("frames in receive FIFO ")
PUT(two bytes (mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT(" frames transmitted ")
PUT(two bytes (mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr ptr + 2;
PUT("excess collisions ");
PUT(two bytes (mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT ("collision fragments received......... ")
PUT(two bytes (mem(blk).data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT("lost frames ");
PUT(two bytes(mem(blk).data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT ("multicast frames accepted ")

309

----S

".W%'. .- mb-'%g- m % W% . T . .--. .- *-7-r- 4-~ - * - - ; , 7 Y ;"- . " -.

PUT(twobytes(mem(blk) .data(ptr) 'ADDRESS));
NEWLINE;
ptr ptr + 2;
PUT ("multicast frames rejected
PUT(twobytes(mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr-:= ptr + 2;
PUT ("crc errors '");

PUT(twobytes(mem(blk) .data(ptr) 'ADDRESS)); ,.
NEW LINE;
ptr-:= ptr + 2;

,. PUT ("alignment errors ");
PUT(twobytes(mem(blk) .data(ptr) 'ADDRESS));
NEW LINE;
ptr := ptr + 2;
PUT("collisions ");
PUT(twobytes(mem(blk) .data(ptr) 'ADDRESS));p NEWLINE;
ptr := ptr + 2;
PUT ("out-of-window collisions ,')
PUT(two bytes(mem(blk) .data(ptr) 'ADDRESS));
NEWLINE;
ptr ptr + 2;

v END IF;
givememory(blk);
prompt;

WHEN others =>
IF verbose THEN

PUT ("received unknown type");
END IF;

.* givememory (blk);
prompt;

END CASE;-
ELSE

givememory(blk)
END IF;

END handle incoming packet;

. PROCEDURE established is
loopthrshld : INTEGER;

h" thrshld : INTEGER;

loopcnt : INTEGER;
localsegnum : array2;
foreignseg-num : array2;
msgcnt : INTEGER;
nosend : INTEGER;
no-rec : INTEGER;
TYPE inpt is RECORD

size : BYTE;
ch : STRING;

END RECORD;
npt : inpt;

" 310

.01

4.,

bik INEGER;

BEGIN EGR;1.

PUT("Connection Ready"); NEWLINE;
trnsQ :=0;
used bik := he0;

lcb(prt).act :=TRUE;
lcb(head).act :~TRUE;
FOR i IN l..max mem bik - 1 LOOP

END LOOP;
mem manag tbl(max.mem blk) :=0;
free-bik :=1,pquit received :=.FALSE;
bell on FALSE;
mailbox FALSE;
verbose :=TRUE;
runfil FALSE;

erunfilQ 0;
estab :=FALSE;
logged in :=FALSE;
printer :=99;

'I lcb(prt).state :=log;
PUT("'Login: "1);

LOOP
--check for control
--codes from concentrator -

inport (stat,data);
IF tstbit (INTEGER (data) ,RxRdy) THEN

iriport (dat, data);
CASE data is

WHEN code cls =>
IF mailbox THEN

outport(dat,code_lstn);
estab := FALSE;

ELSE
p. EXIT;

END IF;
WHEN code estab =>

NEW LINE;
PUT("Connectioi Established");
estab :=TRUE;

0 IF NOT logged in THEN
lcb(head).name :="NO-NAME";
logged in := TRUE;
lcb(head).state ready;

END IF;
prompt;

311

WHEN code local =>
outport (dat, dstprt);

WHEN others => null;
END CASE;

END IF;

--handle keyboard input
IF keypress() THEN

getch(ch);
0~ IF logged in THEN

IF estab THEN
IF runfil THEN

IF ch = asciicntlQ THEN
runfil := FALSE;
-IF lcb(prt).fileopen THEN

close -file(lcb(prt) .FCBb'ADDRESS);
lcb(prt).fileopen := FALSE;

END IF;
IF lcb(prt).namQ /= 0 THEN

give memory(lcb(prt) .namQ);
lcb(prt).namQ :=0;

0 END IF;
IF lcb(prt).filQ 1=0 THEN

give memory(lcb(prt) .filQ);
lcb(prt) .filQ :=.0;

END IF;
lcb(prt).state := ready;

END IF;
ELSE

handle kybd input(ch);
END IF;

ELSE
CASE ch is

WHEN asciizero..asciinine =>
handle_kybdinput(ch);

WHEN asciiP ! asciip =>
handle kybdinput(ch);

WHEN asciiCR =>
handle-kybd-input(ch);

WHEN asciiQuest =>
PUT ("Information"l);
NEWLINE;
PUT-("?">)
NEW LINE;
PUT("Quit"l);
NEW LINE;
PUT"Netstat");
NEWLINE;
PUT ("Print");
NEW LINE;
PUT("1<destination>"1);
NEWLINE;

312

WHEN asciil ascii i =>
handle_kybd_input(ch);

WHEN asciispace =>
handle_kybdinput(ch);

WHEN asciiN !ascii n =>
handle_kybd input(ch);

WHEN asciiQ ! asciiq =>
'S handle kybd input(ch);

WHEN others =>
PUT("1not established, "1)

put("lenter destination # *or P"1);
prompt;

END CASE;
END IF;

ELSE
CASE ch is

WHEN asciiA. .asciiZ =>
handle kybd input(ch);

WHEN ascii-a. .ascii z =>
ch :=capital(ch);
handle_kybdinput(ch);

WHEN asciiQuest =>
PUT("'Enter your name followed by <CR>"1);
NEW LINE;

2 PUT(lcb(head) .name);
WHEN asciiBS ! asciiDEL =>

handle kybd input(ch);
WHEN asciiCR =>

lcb(prt).state :=ready;
logged in :=TRUE;
prompt;,

WHEN others =>
PUT("lillegal entry");
NEW LINE;
PUT(lcb(head) .name);

END CASE;
IF length(lcb(head).name) = 20 THEN

lcb(prt).state :=ready;
logged in :=TRUE;
NEWLINE;
PUT("'maximum name length is 20"1);
prompt;

END IF;
END IF;

END IF;
VAN

EXIT WHEN quit received;

~npot (sat~dta);--get incoming packets

IF tstbit(INTEGER(data),DSR) AND used_bik 1
* max mem blk THEN
*inport(dat,data); --clear port

313

bytcnt :=518;
get memory (blk);
get trxs (mem(blk) 'ADDRESS, dat, bytcnt);

byt := mem(blk).cksum;
mem(blk).cksum :=BYTE(O);
mem(blk).frm -len :=arr -to int(mem(blk).len);
msgcnt :=mem(blk).frm fen-+ hdr len;
IF byt 1=cksum(mem(blkE) ADDRESS,msgcnt) THEN

PUT("***error in cksum***");

NEWLINE; -.

mem(blk).clcsum := BYTE (1);
EN IF r.

4.IF msgcnt > bytcnt THENN.
PUT("I.entire msg NOT rec'd"); -

PUT(" msg len = "1); PUT(msgcnt);
PUT(" byt cnt = "1); PUT(bytcnt);
NEWLINE;
give-memory(blk);

-4 ELSE
handle incoming packet(blk);

END IF;
ELSE

give memory (blk); 1

* END IF;
END IF;

* --poll the LCBs
FOR i IN 0. .head LOOP

CASE lcb(i).state is
WHEN sending =>

IF used blk < 5 THEN 4

send-f ile (i);
END IF;

WHEN repeatsnd =>
blic := lcb(i).filQ; -

IF blk /= 0 THEN
send trns(mem(blk) 'ADDRESS,dat,

mem(blk).frm len);
IF mem(blk).frm len - 0 THEN

IF lcb(i).dest - broadcast OR
i = printer THEN

lcb(i).state :=sending;
give-memory(blkc);
lcb(i).filQ :=0;

ELSE
lcb(i).state :=wait-for-ack;

END IF;
IF verbose AND

mem(blk).typ =filedat THEN
"'4 PUT (".")

lcb(prt).line cnt :

314

lcb(prt).line cnt + 1;
IF lcb(prt).line cnt =80 THEN

NEWLINE; %
lcb(prt).line cnt :=0;

END IF;
END IF;

END IF;
ELSE

lcb(i).state :=ready;
END IF;

WHEN dir data => ..r
IF used bik < 5 THEN

get memory(blk); F

lcb(i).filQ :=bik;
send dir(i);

END IF;

WHEN others =>
null;

END CASE;

IF lcb(i).rcvQ /=0 AND lcb(prt).state 1=talk AND
lcb(prt).state 1=sendfile THEN

bik := lcb(i)..rcvQ;
lcb(i).rcvQ :=mem-manag_ tbl(blk); .

handle-incoming packet(blk);
END IF;

END LOOP;

--send transmissions
IF trnsQ /- 0 THEN

send tins (mem(trnsQ) 'ADDRESS,dat,
mem(trnsQ) .frmlen);

IF mem(trnsQ).frm len = 0 THEN
blk := trnsQ;
trnsQ := mem manag tbl(blk);
give memory(blk);

END IF;-
END IF;

END LOOP;
outport(dat,code cls);

END established;

BEGIN
inport(dat,data); --clear port -.

inport(ocwl reg,org ocwl); --save mask 'till end
outport (ocwl reg, ocwl);
outport(cmd,clr);
clinscreen;
FOR i IN 0..head LOOP

315

I rXw ,jL-.p M-A rak.p 7- r.'- -7 'F~P . 2 '.P - IN~ n -C. Jr Pvy. rAw.w r~ :i.- ~

lcb(i).state ready;
lcb(i).name I'll;,
lcb(i).act FALSE;
lcb(i).sndQ 0;
lcb(i).rcvQ :=0;
lcb (i) .f ilQ :=0;
lcb(i).dest :=BYTE(i);

END LOOP;
outport(dat,code reqPrt);
LOOP

inport (stat, data);
IF tstbit(INTEGER(data),RxRdy) THEN

inport (dat, data);
IF data = code reqPrt THEN

LOOP .

inport (stat, data);
IF tstbit(INTEGER(data) ,RxRdy) THEN

inport (dat, data);
EXIT;

END IF;
END LOOP;
PUT("1your terminal number is "1);%%
src-prt := data;
PUT (INTEGER(srcprt)); NEWLINE;
EXIT;

ELSE
outport(dat,code reqPrt);

END IF;
END IF;

END LOOP;
-~ prt, := head;

dstJprt := BYTE(16#FF#);
outport(dat,codelstn);
LOOP

LOOP
inport (stat, data);
EXIT WHEN tstbit (INTEGER(data) ,RxRdy);

END LOOP;
inport(dat,data);
EXIT WHEN data = code lstn;
IF data = code cis THEN

outport(dat,code lstn);
ELSE

outport(dat,code cis);
END IF;

END LOOP;
established;
PUT("Connection terminated"); NEWLINE; -

outport(dat,code cls);
outport(ocwl reg,org ocwl); --restore state

END locftp;

316

* . .*--- - -.-.

APPENDIX J

"..

LISTING OF Z-100 MUJLTI-USE PROGRAMS 4

package asmlib is

function byte to char (byt: in byte) return character;
function byte to chr (byt: in byte) return character;

*--BYTETOCHR DOES NOT CLEAR BIT SEVEN.
procedure prntdata (byt : IN byte);
PROCEDURE getch(char : OUT BYTE);

PROCEDURE delete file(addr : IN INTEGER);
PROCEDURE create file(addr : IN INTEGER;

rslt :OUT INTEGER);
PROCEDURE compute cksum(addr : IN INTEGER;

amt :IN INTEGER;cksm :OUT BYTE);
PROCEDURE write file(addr :IN INTEGER;

succ :OUT BOOLEAN);

PROCEDURE close file(addr IN INTEGER);
PROCEDURE setDbMA(addr :IN INTEGER);
PROCEDURE search-frst(addr :IN INTEGER;

fnd : OUT BOOLEAN);
PROCEDURE search nxt(addr :IN INTEGER; -

PROCDUREsendfnd : OUT BOOLEAN);
_tnsadr~atprt :IN INTEGER;

amt : IN OUT INTEGER);

PROCEDURE open file(addr :IN INTEGER;
found :OUT BOOLEAN);

PROCEDURE read file(addr :IN INTEGER;
rslt :OUT INTEGER);

FUNCTION current dsk RETURN BYTE;
FUNCTION capital:(char :IN BYTE) RETURN BYTE;
FUNCTION lower case(char IN character)

RETURN character;
FUNCTION arr to strg(addr IN INTEGER)RETURN string;

FUNCTION convbyt(char : IN CHARACTER) RETURN BYTE;
PROCEDURE get strg(addr :IN INTEGER);
PROCEDURE get trns(addr,data prt :IN INTEGER;

num : IN OUT INTEGER);
PROCEDURE prntbuf(addr :IN INTEGER);

FUNCTION cksum(addr, bytcrit : IN INTEGER)RETURN BYTE;
function no-echo return byte;

317

,U

--

--. ,-- -

FUNCTION two bytes(addr IN INTEGER) RETURN INTEGER;
procedure clrscreen;

end asmlib;

--PACKAGE NAME: ASMLIB.ASM
--AUTHOR: ALEC YASINSAC and Robert Hartman
--DATE: JAN 86 %-1
--SUBROUTINES CONTAINED: 1. POLLER %

i ~Package assembly asmlib is...

jmp main -- ASM PACKAGE MUST JUMP ANY CODE NOT INTENDED
--AS INITIALIZATION CODE.

star equ OedH
cmd equ OefH
dat equ 0ecH
DSR equ 80H
DTR e qu 27H
clr equ 25H
TxRdy elh
RxRdy equ 2H
rs232_delay equ 400 ;833 usec/byte @ 9600 BAUD -%,; 4 usec/loop

function byte to char (byt: in byte) return character is

pop bx
pop ax 4
push bx
and al,7fh

ret
end byte_tochar; %.O'

function byte to chr (byt: in byte) return character is

pop bx
pop ax
push bx

ret
end byteto chr;

procedure prntdata(byt : IN BYTE) is "_
pop di
POP dx
push di
and dl,7fH
mov ah,02h ; SET AH REG FOR CONSOLE DISPLAY

318

44
4...%44.'.4
• ". . " . .-.- - . .- .__ °r, .-. .. ' . "% %- , % %"o .'% % % %.. % % • . - -.- o'°'% " % ".% % " . .%_

.~.

int 21h ; SEND CHAR FMPORT TO THE CONSOLE
ret

end prntdata;

procedure getch(char : OUT BYTE) is .%.0
POP ax ;rtn , .0

POP di ;char
PUSH di
PUSH ax
MOV dl,OffH %
MOV ah,6 ;--direct console I/O
INT 21H
MOV [di],al
RET

end getch;

PROCEDURE delete file(addr IN INTEGER) is
POP ax
POP dx
PUSH ax
MOV ah,13H
INT 21H
RET A

- END delete file;

PROCEDURE createfile(addr: IN INTEGER, rslt: OUT INTEGER) is
POP ax
POP si
POP dxk PUSH dx .*

PUSH si
PUSH ax ..A
MOV ah,16H
INT 21H
MOV ah,O '-

MOV [si],ax
RET

END create-file;

PROCEDURE compute cksum(addr : IN INTEGER, amt IN INTEGER,
cksm : OUT BYTE) is .

POP ax
POP di
POP cx

SPOP si

PUSH si
PUSH cx
PUSH di

319

• . . . • ,% .

.Vr

PUSH ax
NOV dx,O0

Aagairi3: MOV al,[(si]
INC si *.
XOR dl, al
LOOP again3
NOV [di],dl
RET

END compute cksum;

K PROCEDURE write_file(addr: IN INTEGER,succ: OUT BOOLEAN) is
POP ax ;rtri
POP di ;succ
POP dx . ;addr
PUSH dx
PUSH di
PUSH ax
NOV ah,15H
INT 21H
CHP al,O
JZ good
MOV al,0
NOV (di],al
RET

good: NOV al,l .

NOV [di),al
RET

END write file;

PROCEDURE close file(addr 1 N INTEGER) is
POP ax
POP dx
PUSH ax
NOV ah,lOH
IIJT 21H
RET

END close-file;

PROCEDURE setDMA(addr : IN INTEGER) is
POP ax
POP dx

APUSH ax
MOV ah,laH 1
INT 21H
RET

END setDMA;

PROCEDURE search_frst(addr: IN INTEGER, fnd: OUT BOOLEAN)is :

320

POP ax
POP di
POP dx
PUSH dx
PUSH di
PUSH ax
NOV ah, 11H
INT 2 1H
CMP al,OffH %0
JE not fnd
NOV al,1
NOV (di],al
RET

notfnd: MOV al,0
MOV (di],al
RET

END search-frst;

PROCEDURE search-nxt(addr: IN INTEGER, fnd: OUT BOOLEAN) is
POP ax
POP di
POP dx
PUSH dx
PUSH di
PUSH ax
NOV ah,12H
INT 21H
CNP al,OffH
JE notfndl
NOV al,1
MOV [diJ,al
RET

notfndl:NOV al,0
NOV (di],al
RET

END search nxt;

PROCEDURE send trns(addr, Data prt :IN INTEGER,
amt :IN OUT INTEGER) is

wait-time EQU 1000
POP ax ;rtn
POP di ;amt
POP dx ;Data_prt
POP si ;addr
PUSH si
PUSH dx
PUSH di
PUSH ax
INC dx
IN al,dx

321

AND al, DSR
JNZ send trnsD2
MOV al,DTR
INC dx
INC dx
OUT dx,al
DEC dx
DEC dx
IN al,dx
AND al,DSR
JNZ send trnsD ;--too soon for DSR
MOV bx,wait time
MOV cx,[di]-

send trnsLl:
IN al, d-.
AND al,DSR
JNZ send trnsL5
DEC bx
JZ send trnsD
JMP send-trnsLl

sendtrnsL5:
NOP ;--this was inserted due

0 IN al,dx ;--to occasional timing
AND al,DSR ;--problemsJZ send trnsD

sendtrnsL2:
IN al,dx
AND al,DSR
JZ send trnsD
MOV al,[si]
DEC dx
OUT dx,al
INC si
INC dx

send trnsL3:
IN al,dx
AND al,TxRdy
JZ send trnsL3
LOOP send trnsL2
MOV [di],cx ;--transmission complete
MOV cx,rs232_delay

send trnsL4:
NOP
LOOP send trnsL4

send trnsD:
MOV al,clr
INC dx -
INC dx
OUT dx,al
DEC dx
DEC dx
MOV cx,wait time

322V"322 '

If.R

m'. , .m -

5".' i'' ' '.'.ld2.'. '-%-" ';.. -'. .%%%.%'€ .-'..:'" "'. "."v,-'.'" "V.'"-"" ". - . -.. '. '.". .. ". z .-_' , .'_'; */,1

sendtrnsDl:
IN al,dx
AND al,DSR
JZ send trnsD2
LOOP send-trnsD.

send trnsD2:
RET

END send trns;

PROCEDURE open_file(addr: IN INTEGER,found: OUT BOOLEAN) isPOP axPOP di

POP dx "''
PUSH dx ;"

PUSH di
PUSH ax
MOV ah,OfH
INT 21H
CMP al,O
JZ open fileD "' ,
MOV al, 0-'"

MOV [di],al
RET

openfileD: ..

MOV al,1
MOV [di],al
RET ?

END open_file;

PROCEDURE read file(addr: IN INTEGER, rslt: OUT INTEGER) is

POP ax
POP di
POP dx
PUSH dx
PUSH di
PUSH ax
MOV ah,14H
INT 21H
MOV ah,O
MOV (di],ax.'I-
RET

END readfile;

FUNCTION current dsk RETURN BYTE is
MOV ah,19H
INT 21H
RET

END current dsk;

4 323

4. . C - -

:" .,*

A.

FUNCTION capital(char : IN BYTE) RETURN BYTE is

POP bx
POP ax --
PUSH bx
AND al,5fH
RET

END capital;

FUNCTION lowercase(char: IN character) RETURN character is
POP bx
POP ax
PUSH bx
or al,20H
RET

END lowercase;

FUNCTION convbyt(char IN CHARACTER) RETURN BYTE is
POP bx
POP ax
PUSH bx
RET

END conv byt;

PROCEDURE get strg(addr : IN INTEGER) is
;--addr points to a buffer whos first byte is its size .
;--the second byte has byte count received from the kybd
;--the third byte begins the input string

POP ax
POP dx
PUSH ax
MOV ah,OaH
INT 21H
RET

END getstrg;

PROCEDURE gettrns(addr,Dprt : IN INTEGER,
amt : IN OUT INTEGER) is

POP ax ;--rtn
POP si ;--num .5 .
POP dx ;--dataprt
POP di ;--addr
PUSH di
PUSH dx
PUSH si
PUSH ax
MOV cx,[si]

324

_Zr~

3 b ..

"*% S

S.-

'-S ,--l-:
.5 5,~~~~~"' "' S ' .5 ' ' .'*

MOV bx,O0
INC dx
IN al, dx
AND al, DSR
JZ get-prt dataD
INC dx
INC dx
MOV al,DTR
OUT dx,al
DEC dxIDEC dx
MOV ah,255

getprt-dataL:
IN al,dx
AND al,RxRdy
JNZ get prt dataLl
IIN al,dx
AND al,DSR
JZ get prt-dataDi
DEC ah
JNZ get prt dataL
imp get prt dataD.

get prt_dataLl:
DEC dx
IN al,dx ; --getting data
MOV [di],al
INC di
INC bx
SINC dx
MOV ah,255
LOOP get prt-dataL

get prt dataDi:
MOV al,clr
INC dxiINC dx
OUT dx,al

getprt dataD:
mov (si],bx
RET

END get_tris;

PROCEDURE prnt buf(addr :IN INTEGER) is
POP ax
POP si
PUSH ax
MOV cl,(si]
MOV ch,o
INC si

pint-bufL:
MOV dl,[si3
INC si

325

X. -: .-vn

and dl,7fH
mov ah, 02h
int 21h
LOOP prntbufL
RET

END prntbuf;

FUNCTION cksum(addr, bytcnt IN INTEGER) RETURN BYTE is
POP ax .'-
POP cx
PO P s i .,

PUSH ax
MOV al,0

cksumL: MOV bl,[si]
XOR al,bl
INC si
LOOP cksumL
RET

END cksum;

function no echo return byte is
; PROCEDURE TO ALLOW A USER TO ENTER HIS PASSWORD
; WITHOUT ECHO TO THE CONSOLE.

pop dx
mov ah,8 ; SET FOR NO ECHO FUNC INTERRUPT.
int 21h
push dx

ret
end no echo;

FUNCTION arr to strg(addr IN INTEGER) RETURN string is

POP bx
POP ax
PUSH bx
RET

END arr to strg;

FUNCTION two_bytes(addr IN INTEGER) RETURN INTEGER is
POP bx
POP si
PUSH bx
MOV ax,[si]
RET

END twobytes;

326

procedure clrscreen is

mov ah,02h V.

mov dl,lbh
int 21h

mov dl,45h
int 21h

ret
end clrscreen;

main: -- ANY INITIALIZATION CODE WOULD FOLLOW THIS LABEL
end asmlib;
package getip is

procedure getaddr(ipl, ip2, ip3, ip4: out integer);
end get ip;

--PACKAGE NAME: GET IP
--SUBPROGRAMS CONTAINED: GETADDR
--AUTHOR: ALEC YASINSAC
--DATE: DECEMBER 1985

with 10, strlib;
package body get ip is

procedure get addr(ipl, ip2, ip3, ip4: out integer) is
--INPUT: HOSTS.FIL
--OUTPUT: INTERNET PROTOCOL ADDRESS .
--DESCRIPTION: • ".

-- GETIP PRINTS THE CONTENTS OF THE FILE 'HOSTS.FIL' AND
-- ASSOCIATES WITH IT A SELECTOR NUMBER. THE USER IS
-- PROMPTED TO SELECT HIS DESTINATION BY KEYING IN A NUM-
-- BER. GET ADDR THEN INTERPRETS THE ADDR AND RETURNS
-- THE SELECTED ADDRESS TO THE CALLING ROUTINE.

use 10, strlib;
type iprec is array (1..40) of integer;
inaddrl, inaddr2, inaddr3, inaddr4 : iprec;
inname: string(21);
selection, ctr: integer; .:..::
infile, outfile, hosts, con: file;
badinp: boolean;
inp: string;
buf, k : integer;

begin -- begin procedure getaddr
j ctr :=0;

new line;
put ("THE FOLLOWING IS THE LIST");

327

o-4

put(" OF DESTINATIONS AVAILABLE. ");
new line;
put(I"0 TERMINATE PROCESS."); new line;
open(hosts,"hosts.fil",read_only);
while not end of file(hosts) loop

ctr := ctr + 1;
get (hosts, inaddrl(ctr));

* get (hosts, inaddr2(ctr));
get (hosts, inaddr3 (ctr));
get (hosts, inaddr4(ctr));
inname "
k := 1; .'

% while (not end of line(hosts) and k < 21) loop
% read (hosts, inname(k));

k := k + 1;
,S end loop;

skipline (hosts);
new line;
put(ctr); put(" ");
put(inname); put(" ");
put(inaddrl(ctr)); put(" ");
put(inaddr2(ctr)); put(" ");
put (inaddr3 (ctr)) ; put(" ");
put(inaddr4 (ctr));

end loop;
close (hosts);
selection := ctr + 1; new line;

loop -- VALIDATE INPUT HERE
put ("ENTER A NUMBER BETWEEN 0 AND ");
put(ctr); put("."); new line;
put ("ENTER ZERO TO TERMINATE PROCESS."); new-line;
badinp := false; newline;
put(>> ");
inp := get lineo;

-- PRESUME THERE WILL NOT BE MORE THAN
-- 99 POSSIBLE REMOTE HOSTS. MUST CHECK "
-- FOR THE POSSIBILITY OF TWO DIGITS.

for i in 1..length(inp) loop
if not (inp(i) in '0'..'9') then .

badinp := true;
exit;

end if;
end loop; --ENDS FOR LOOP.
if not badinp then

selection := str to int(inp);
if selection <= ctr then

exit;
end if;

end if; %
end loop;

.

V 328'S." ..
0""

J.W W

1%d

if (selection =0) then 1.%
ipi := 0; ip2 := 0; ip3 0; ip4 :=0;

--BY CONVENTION, THE IP ADDRESS RETURNED =ZERO

--INDICATES USER TERMINATION.
else

ipl : inaddrl(selection);%%
ip2 :=inaddr2(selection);
ip3 :=inaddr3(selection);
ip4 :=inaddr4(selection);

end if; -- selection =0

end get addr;
end get ip;

--this program is used to download a program into the
--concentrator for the AEGIS LAN.
with bootasm, bit;
PROCEDURE boot is
use bootasm, bit;

threshold : constant integer 10000; -
ocwl_reg : constant integer :=(16#00f3#);
ocwl :constant byte :=byte (16#aa#);
code download :constant byte :=byte(16#c4#);
code end :constant byte :=byte(16#FF#);
dat :constant integer (16#ec#);
stat :constant integer :=(16#ed#);
cmd :constant integer :=(16#ef#);
DTR : constant byte :=byte(16#27#);
RxRdy :constant integer :=1;
TxRdy :constant integer :=0;
TYPE array8 is ARRAY~i. .8) of BYTE;
TYPE array3 is ARRAY(l..3) of BYTE;
TYPE array2 is ARRAY(1..2) of BYTE;
TYPE array4 is ARRAY(l..4) of BYTE;
buf :array(l. .512) of byte;

TYPE fcbREC is RECORD
dry BYTE;
name :array8;-
ext array3;
extnt :INTEGER;
Rsize INTEGER;
Fsize array4;
date array2;
time :array2;
resrvd array8;
rec : BYTE;
rndm :array4;
END RECORD;

FCB fcbREC;

329

~hmT-7

Idata : byte;
ptr : integer;
org_ocwl : byte;
loopcnt : INTEGER;
found : BOOLEAN;
rslt : INTEGER;
linecnt. : INTEGER;

BEGIN -

inport (dat, data);
inport(ocwl_reg,org ocw!4;
outport(ocwl reg,ocwl);

outport(dat,code_download);
loport :=d DT0;LU('eloet the Naval Postgraduate School's "1);

PUTI'CmpuerScience Lab");

LOO7P
inport(stat,data);
IF tstbit(INTEGER(data),RxRdy) THEN

inport(dat,data); -

EXIT WHEN data = code-download;

END IF;
loopcnt := loopcnt + 1;
IF loopcnt =threshold THEN

RETURN;
END IF;

END LOOP;
PUT("'Please standby..)
NEWLINE;
FCB.drv := BYTE(O);
FCB.name(1) :=BYTE(16#43#); --C
FCB.name(2) :=BYTE(16#4F#); --0
FCB.name(3) :=BYTE(16#4E#); --N
FCB.name(4) :=BYTE(16#54#); --T
FCB.name(5) :=BYTE(16#52#); --R
FCB.name(6) :=BYTE(16#4F#); --0
FCB..name(7) :-BYTE(16#4C#); --L
FCB.name(8) :=BYTE(16#20#); -

FCB.ext(l) :=BYTE(16#50#); -P
FCB.ext(2) BYTE(16#52#); --R
FCB.ext(3) :=BYTE(16#47#); --G

open_file(FCB'address,found);
IF found THEN

FCB.extit :=0; 10
FCB.rec :- BYTE(O);
FCB.Rsize :- 512;
setDHA (buf 'ADDRESS);
linecnt :=0;

330

LOOP
read file(FCBIADDRESS,rslt);
IF rslt =O0OR rslt =3 THEN

send (buf'ADDRESS);
PUT ('*') ;
linecnt :=linecnt + 1;
IF linecrit = 80 THEN V.

NEWLINE;
END IF;
EXIT WHEN rslt = 3;

ELSE -

close-file(FCB'address);
EXIT; .

'.4END IF;
END LOOP;
NEW LINE;
FORi IN l1-4 LOOP

LOOP
inport (stat, data);
EXIT WHEN tstbit(INTEGER(data) ,TxRdy);

END LOOP;
outport(dat,code-end);

END LOOP;
PUT("'Download to concentrator complete"); NEWLINE;

ELSE
PUT("'1CONTROL.PRG' not found on current drive");
NEW LINE;

END IF;-
END boot;

Package assembly bootasm is
j mp main-------ASH PACKAGE MUST JUMP ANY CODE NOT

------------------- INTENDED AS INITIALIZATION CODE.

stat equ OedH
cmd equ OefH
dat equ OecH
TxRdy equ 1h

RxRdy equ 2H

PROCEDURE close file(addr IN INTEGER) is
POP ax ..

POP dx
PUSH ax
NOV ah,lOH
INT 21H
RET

END close file;

--- 4

PROCEDURE setDMA(addr IN INTEGER) is

* 331

POP ax
POP dx
PUSH ax
NOV ah,l1aH
INT 21H
RET

END setDMA;

PROCEDURE open file(addr: IN INTEGER, found: OUT BOOLEAN)is
POP ax
POP di
POP dx
PUSH dx
PUSH di
PUSH ax
NOV ah,OfH
INT 21H
CNP al,O
JZ open fileD
NOV al,O
NOV [diJ,al
RET

open fileD:
NOV al,l

A OV [di],al
RET

END open file;
-- - - - - - - -- - - - - - - -- - - - - - -

PROCEDURE read -file(addr: IN INTEGER, rslt: OUT INTEGER) is
POP ax
POP di.4.
POP dx
PUSH dx
PUSH di
PUSH ax

* OV ah,14H
INT 21H
NOV ah,O
NOV [di],ax
RET

END read-file;

PROCEDURE send(addr :IN INTEGER) is
POP ax
POP si
PUSH ax
NOV cx,512

sendL: IN al,stat
4-AND al,TxRdy

JZ sendL

332

-d

MOV al, tsil
OUT dat, al t.
INC si
LOOP sendL
RET

END send;

- - - - - - - - - - - - - - -- -

main: -- ANY INITIALIZATION CODE WOULD FOLLOW THIS LABEL
end bootasm;

, .~

%

% %

J.~l I

333

-4

.4

-------

APPENDIX K

GLOSSARY

1. Communication
!V1%

Communication is viewed as inter-process

communication, even if it is to and from a terminal or

printer.

2. Datagram

A datagram is a group of characters or bytes

entailing a message combined with the source and

destination address of the message. Datagram may also

refer to a type of network service in which each message is

handled as an isolated entity.

3. FTP, IP, TCP, TELNET

Each of these terms represent a documented network

protocol. 'Telecommunications Control Protocol', 'Internet

Protocol', 'File Transfer Protocol', and 'TELNET Protocol'

each provide at least one of the ISO standard layers of

protocol as described by Tannebaum [Ref. 2]. These

protocols are specified in [Ref. 3].

4. Hosts

Hosts are computers connected to a network and are .

the originators and receivers of information as far as the

networks are concerned.
,* .

, .%

.5 334 " "
i

5. L

I. ,.If

LAN is an acronym for Local Area Network and is .4.

used to represent any network operating exclusively within

a low radius region.

6. MULTIBUS

The AEGIS multi-user system is built with a

Multibus frame which allows multiple SBC's to communicate

directly with common-memory within the frame.

7. Networks

Networks can be either local networks like ethernet
."'. " .

or large networks like ARPANET.

8. NPS

This is an acronym for Naval Postgraduate School,
Monterey, California.

9. Octet

An octet is a grouping of eight data bits. N

10. Packets

Packets is a term used to mean a set of data for

one transaction between a host and its network. A packet

can mean just a few bytes to several thousand bytes. They

are transfered over a network as a group unless

fragmentation occurs which we will discuss later.

11. Ports

Ports are channels through which processes

communicate. A process may have many ports or just one

335

J ~ .4t.* *"* . %4....-

(ie. a non-sharable asset like a printer has only oneU.'Q

port).

12. Process

Processes are active elements in a host computer -

(ie, a program in execution).

13. SMTP

Simple Mail Transfer Protocol (SMTP) is used to

pass mail across the-network (rfc821)

14. Single Board Computer (SBC)

A single board computer is a configuration of VLSI

circuitry on one computer board capable of performing the

functions of a computer. When this term is used in the

thesis it is usually referring to the Intel 86/12A SBC

which is the driving force of the AEGIS multi-user system.

15. TAC -U -

TAC (terminal access controller) is a way of

accessing a network by connecting a hard-wire or dial-up

phone connection to the controller for access to a network

without going through a host computer. The TAC's are .

positioned around the country to allow fairly short phone .:,

connections to the world wide network.

16. USART U.-

A USART is a microprocessor that provides

communication interface between computers or between a -

computer and a peripheral device.

336

a' I _ ,

• ::::

3 3 6_.. U-'. U U...U

This is the specific model name for the

microcomputers used in this network configuration. The

vendor is Zenith Data Systems.

337

vi "4..°

LIST OF REFERENCES

1. Reeke, D. R., Remote Terminal Login From a
Microcomputer to the UNIX Operating System Udin,
Ethernet As the Communications Medium, M. S. Thesis,
Naval Postgraduate School, Monterey, California,
December, 1984.

2. Network Information Center, Internet Protocol
Transition Workbook, SRI International, 1982. .

3. Ddn New User Guide, NIC 50001, December 1985.

4. Tannenbaum, A. S., Computer Networks, Prentice Hall,
1981

5. MacLennan, Bruce J. , Principles of Programming
Languages: Design, Evaluation, and I ementation,
Holt, Rinehart and Winston, 1983.

-4.....

J 4 .

k.

16 N

338.

4, 4-4-

h.. -

.. J., .q

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5000

3. Department Chairman, Code 52 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Uno R. Kodres, Code 52Kr 9
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943-5000

5. Capt. Alec F. Yasinsac 4
Rte. 2 Box 346
Sparta, N. C. 28675

6. Lt. Cmdr Robert L. Hartman 3
VF/A 161
FPO San Francisco, California 96631

7. Computer Technology Programs 1
Code 37
Naval Postgraduate School
Monterey, California 93943-5000

8. Lt. Col. John D. Reeke, USMC 1
9547 University Avenue
Des Moines, Iowa 50322

9. Professor Bruce J. McLennan, Code 52M1 1
Department of Computer Science
Naval Postgraduate School
Monterey, California 9393-50000

10. Professor Gordon E. Latta, Code 53Lz 1
Department of Mathematics
Naval Postgraduate School
Monterey, California 93943-5000

k

339

J

11. Lt. Joann Ammann 1
Naval Security Group Activity
Skaggs Island, Sonoma, California 95476

.4

-.". - 9"-

4...

4..

*
.a. -. " .-- . ." a . "-"-S. . ' . ' .. z '- . ,_• - i - " .". .. _." _. '_' ,,' . .. '.'.. ., . .-. ' ' ' -- ' .

- - ~- ~- * --- - - - -~ ~ - -~ -~ - -. -* - - - -

*1
.4

.4

.4
'.4

.4

.4 .4

I
L

a
.4.
.4..

4.

r

d

44~

*41

4..
4

-r
-a

.4-.'

*1

A
.4.
4.

4'

4-

.4,

I..

.4

.4.

* 4%.4.4

444
V

.4 -.

-- ~-~- ~ ~ -'- -* -* .* *... -... %~%%~4'.~ZXAZ-. .* *

